1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/modules/webaudio/audio_scheduled_source_handler.h"
#include <algorithm>
#include "base/compiler_specific.h"
#include "third_party/blink/public/platform/task_type.h"
#include "third_party/blink/renderer/core/execution_context/execution_context.h"
#include "third_party/blink/renderer/modules/event_modules.h"
#include "third_party/blink/renderer/modules/webaudio/base_audio_context.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/bindings/exception_messages.h"
#include "third_party/blink/renderer/platform/bindings/exception_state.h"
#include "third_party/blink/renderer/platform/scheduler/public/post_cross_thread_task.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_copier_base.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_functional.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
namespace blink {
AudioScheduledSourceHandler::AudioScheduledSourceHandler(NodeType node_type,
AudioNode& node,
float sample_rate)
: AudioHandler(node_type, node, sample_rate),
end_time_(kUnknownTime),
playback_state_(UNSCHEDULED_STATE) {
if (Context()->GetExecutionContext()) {
task_runner_ = Context()->GetExecutionContext()->GetTaskRunner(
TaskType::kMediaElementEvent);
}
}
std::tuple<size_t, size_t, double>
AudioScheduledSourceHandler::UpdateSchedulingInfo(size_t quantum_frame_size,
AudioBus* output_bus) {
// Set up default values for the three return values.
size_t quantum_frame_offset = 0;
size_t non_silent_frames_to_process = 0;
double start_frame_offset = 0;
DCHECK(output_bus);
DCHECK_EQ(
quantum_frame_size,
static_cast<size_t>(GetDeferredTaskHandler().RenderQuantumFrames()));
double sample_rate = Context()->sampleRate();
// quantumStartFrame : Start frame of the current time quantum.
// quantumEndFrame : End frame of the current time quantum.
// startFrame : Start frame for this source.
// endFrame : End frame for this source.
size_t quantum_start_frame = Context()->CurrentSampleFrame();
size_t quantum_end_frame = quantum_start_frame + quantum_frame_size;
// Round up if the start_time isn't on a frame boundary so we don't start too
// early.
size_t start_frame = audio_utilities::TimeToSampleFrame(
start_time_, sample_rate, audio_utilities::kRoundUp);
size_t end_frame = 0;
if (end_time_ == kUnknownTime) {
end_frame = 0;
} else {
// The end frame is the end time rounded up because it is an exclusive upper
// bound of the end time. We also need to take care to handle huge end
// times and clamp the corresponding frame to the largest size_t value.
end_frame = audio_utilities::TimeToSampleFrame(end_time_, sample_rate,
audio_utilities::kRoundUp);
}
// If we know the end time and it's already passed, then don't bother doing
// any more rendering this cycle.
if (end_time_ != kUnknownTime && end_frame <= quantum_start_frame) {
Finish();
}
PlaybackState state = GetPlaybackState();
if (state == UNSCHEDULED_STATE || state == FINISHED_STATE ||
start_frame >= quantum_end_frame) {
// Output silence.
output_bus->Zero();
non_silent_frames_to_process = 0;
return std::make_tuple(quantum_frame_offset, non_silent_frames_to_process,
start_frame_offset);
}
// Check if it's time to start playing.
if (state == SCHEDULED_STATE) {
// Increment the active source count only if we're transitioning from
// SCHEDULED_STATE to PLAYING_STATE.
SetPlaybackState(PLAYING_STATE);
// Determine the offset of the true start time from the starting frame.
// NOTE: start_frame_offset is usually negative, but may not be because of
// the rounding that may happen in computing `start_frame` above.
start_frame_offset = start_time_ * sample_rate - start_frame;
} else {
start_frame_offset = 0;
}
quantum_frame_offset =
start_frame > quantum_start_frame ? start_frame - quantum_start_frame : 0;
quantum_frame_offset = std::min(quantum_frame_offset,
quantum_frame_size); // clamp to valid range
non_silent_frames_to_process = quantum_frame_size - quantum_frame_offset;
if (!non_silent_frames_to_process) {
// Output silence.
output_bus->Zero();
return std::make_tuple(quantum_frame_offset, non_silent_frames_to_process,
start_frame_offset);
}
// Handle silence before we start playing.
// Zero any initial frames representing silence leading up to a rendering
// start time in the middle of the quantum.
if (quantum_frame_offset) {
for (unsigned i = 0; i < output_bus->NumberOfChannels(); ++i) {
UNSAFE_TODO(memset(output_bus->Channel(i)->MutableData(), 0,
sizeof(float) * quantum_frame_offset));
}
}
// Handle silence after we're done playing.
// If the end time is somewhere in the middle of this time quantum, then zero
// out the frames from the end time to the very end of the quantum.
if (end_time_ != kUnknownTime && end_frame >= quantum_start_frame &&
end_frame < quantum_end_frame) {
size_t zero_start_frame = end_frame - quantum_start_frame;
size_t frames_to_zero = quantum_frame_size - zero_start_frame;
DCHECK_LT(zero_start_frame, quantum_frame_size);
DCHECK_LE(frames_to_zero, quantum_frame_size);
DCHECK_LE(zero_start_frame + frames_to_zero, quantum_frame_size);
bool is_safe = zero_start_frame < quantum_frame_size &&
frames_to_zero <= quantum_frame_size &&
zero_start_frame + frames_to_zero <= quantum_frame_size;
if (is_safe) {
if (frames_to_zero > non_silent_frames_to_process) {
non_silent_frames_to_process = 0;
} else {
non_silent_frames_to_process -= frames_to_zero;
}
for (unsigned i = 0; i < output_bus->NumberOfChannels(); ++i) {
UNSAFE_TODO(
memset(output_bus->Channel(i)->MutableData() + zero_start_frame, 0,
sizeof(float) * frames_to_zero));
}
}
Finish();
}
return std::make_tuple(quantum_frame_offset, non_silent_frames_to_process,
start_frame_offset);
}
void AudioScheduledSourceHandler::Start(double when,
ExceptionState& exception_state) {
DCHECK(IsMainThread());
Context()->NotifySourceNodeStart();
if (GetPlaybackState() != UNSCHEDULED_STATE) {
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"cannot call start more than once.");
return;
}
if (when < 0) {
exception_state.ThrowRangeError(
ExceptionMessages::IndexExceedsMinimumBound("start time", when, 0.0));
return;
}
// The node is started. Add a reference to keep us alive so that audio will
// eventually get played even if Javascript should drop all references to this
// node. The reference will get dropped when the source has finished playing.
Context()->NotifySourceNodeStartedProcessing(GetNode());
SetOnEndedNotificationPending();
// This synchronizes with process(). updateSchedulingInfo will read some of
// the variables being set here.
base::AutoLock process_locker(process_lock_);
// If `when` < `currentTime()`, the source must start now according to the
// spec. So just set `start_time_` to `currentTime()` in this case to start
// the source now.
start_time_ = std::max(when, Context()->currentTime());
SetPlaybackState(SCHEDULED_STATE);
}
void AudioScheduledSourceHandler::Stop(double when,
ExceptionState& exception_state) {
DCHECK(IsMainThread());
if (GetPlaybackState() == UNSCHEDULED_STATE) {
exception_state.ThrowDOMException(
DOMExceptionCode::kInvalidStateError,
"cannot call stop without calling start first.");
return;
}
if (when < 0) {
exception_state.ThrowRangeError(
ExceptionMessages::IndexExceedsMinimumBound("stop time", when, 0.0));
return;
}
// This synchronizes with process()
base::AutoLock process_locker(process_lock_);
// stop() can be called more than once, with the last call to stop taking
// effect, unless the source has already stopped due to earlier calls to stop.
// No exceptions are thrown in any case.
when = std::max(0.0, when);
end_time_ = when;
}
void AudioScheduledSourceHandler::FinishWithoutOnEnded() {
if (GetPlaybackState() != FINISHED_STATE) {
// Let the context dereference this AudioNode.
Context()->NotifySourceNodeFinishedProcessing(this);
SetPlaybackState(FINISHED_STATE);
}
}
void AudioScheduledSourceHandler::Finish() {
FinishWithoutOnEnded();
PostCrossThreadTask(
*task_runner_, FROM_HERE,
CrossThreadBindOnce(&AudioScheduledSourceHandler::NotifyEnded,
AsWeakPtr()));
}
void AudioScheduledSourceHandler::NotifyEnded() {
// NotifyEnded is always called when the node is finished, even if
// there are no event listeners. We always dispatch the event and
// let DispatchEvent take are of sending the event to the right
// place,
DCHECK(IsMainThread());
if (GetNode()) {
DispatchEventResult result =
GetNode()->DispatchEvent(*Event::Create(event_type_names::kEnded));
if (result == DispatchEventResult::kCanceledBeforeDispatch) {
return;
}
}
on_ended_notification_pending_ = false;
}
} // namespace blink
|