1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/modules/webaudio/biquad_dsp_kernel.h"
#include <limits.h>
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/blink/renderer/platform/wtf/vector.h"
#ifdef __SSE2__
#include <immintrin.h>
#elif defined(__ARM_NEON__)
#include <arm_neon.h>
#endif
namespace blink {
namespace {
bool HasConstantValues(float* values, int frames_to_process) {
// Load the initial value
const float value = values[0];
// This initialization ensures that we correctly handle the first frame and
// start the processing from the second frame onwards, effectively excluding
// the first frame from the subsequent comparisons in the non-SIMD paths
// it guarantees that we don't redundantly compare the first frame again
// during the loop execution.
int processed_frames = 1;
#if defined(__SSE2__)
// Process 4 floats at a time using SIMD
__m128 value_vec = _mm_set1_ps(value);
// Start at 0 for byte alignment
for (processed_frames = 0; processed_frames < frames_to_process - 3;
processed_frames += 4) {
// Load 4 floats from memory
__m128 input_vec = _mm_loadu_ps(&values[processed_frames]);
// Compare the 4 floats with the value
__m128 cmp_vec = _mm_cmpneq_ps(input_vec, value_vec);
// Check if any of the floats are not equal to the value
if (_mm_movemask_ps(cmp_vec) != 0) {
return false;
}
}
#elif defined(__ARM_NEON__)
// Process 4 floats at a time using SIMD
float32x4_t value_vec = vdupq_n_f32(value);
// Start at 0 for byte alignment
for (processed_frames = 0; processed_frames < frames_to_process - 3;
processed_frames += 4) {
// Load 4 floats from memory
float32x4_t input_vec = vld1q_f32(&values[processed_frames]);
// Compare the 4 floats with the value
uint32x4_t cmp_vec = vceqq_f32(input_vec, value_vec);
// Accumulate the elements of the cmp_vec vector using bitwise AND
uint32x2_t cmp_reduced_32 =
vand_u32(vget_low_u32(cmp_vec), vget_high_u32(cmp_vec));
// Check if any of the floats are not equal to the value
if (vget_lane_u32(vpmin_u32(cmp_reduced_32, cmp_reduced_32), 0) == 0) {
return false;
}
}
#endif
// Fallback implementation without SIMD optimization
while (processed_frames < frames_to_process) {
if (values[processed_frames] != value) {
return false;
}
processed_frames++;
}
return true;
}
} // namespace
bool BiquadDSPKernel::HasConstantValuesForTesting(float* values,
int frames_to_process) {
return HasConstantValues(values, frames_to_process);
}
void BiquadDSPKernel::UpdateCoefficientsIfNecessary(int frames_to_process) {
if (GetBiquadProcessor()->FilterCoefficientsDirty()) {
// TODO(crbug.com/40637820): Eventually, the render quantum size will no
// longer be hardcoded as 128. At that point, we'll need to switch from
// stack allocation to heap allocation.
constexpr unsigned render_quantum_frames_expected = 128;
CHECK_EQ(RenderQuantumFrames(), render_quantum_frames_expected);
float cutoff_frequency[render_quantum_frames_expected];
float q[render_quantum_frames_expected];
float gain[render_quantum_frames_expected];
float detune[render_quantum_frames_expected]; // in Cents
SECURITY_CHECK(static_cast<unsigned>(frames_to_process) <=
RenderQuantumFrames());
if (GetBiquadProcessor()->HasSampleAccurateValues() &&
GetBiquadProcessor()->IsAudioRate()) {
GetBiquadProcessor()->Parameter1().CalculateSampleAccurateValues(
base::span(cutoff_frequency)
.first(static_cast<size_t>(frames_to_process)));
GetBiquadProcessor()->Parameter2().CalculateSampleAccurateValues(
base::span(q).first(static_cast<size_t>(frames_to_process)));
GetBiquadProcessor()->Parameter3().CalculateSampleAccurateValues(
base::span(gain).first(static_cast<size_t>(frames_to_process)));
GetBiquadProcessor()->Parameter4().CalculateSampleAccurateValues(
base::span(detune).first(static_cast<size_t>(frames_to_process)));
// If all the values are actually constant for this render (or the
// automation rate is "k-rate" for all of the AudioParams), we don't need
// to compute filter coefficients for each frame since they would be the
// same as the first.
bool isConstant =
HasConstantValues(cutoff_frequency, frames_to_process) &&
HasConstantValues(q, frames_to_process) &&
HasConstantValues(gain, frames_to_process) &&
HasConstantValues(detune, frames_to_process);
UpdateCoefficients(isConstant ? 1 : frames_to_process, cutoff_frequency,
q, gain, detune);
} else {
cutoff_frequency[0] = GetBiquadProcessor()->Parameter1().FinalValue();
q[0] = GetBiquadProcessor()->Parameter2().FinalValue();
gain[0] = GetBiquadProcessor()->Parameter3().FinalValue();
detune[0] = GetBiquadProcessor()->Parameter4().FinalValue();
UpdateCoefficients(1, cutoff_frequency, q, gain, detune);
}
}
}
void BiquadDSPKernel::UpdateCoefficients(int number_of_frames,
const float* cutoff_frequency,
const float* q,
const float* gain,
const float* detune) {
// Convert from Hertz to normalized frequency 0 -> 1.
double nyquist = Nyquist();
biquad_.SetHasSampleAccurateValues(number_of_frames > 1);
for (int k = 0; k < number_of_frames; ++k) {
double normalized_frequency = cutoff_frequency[k] / nyquist;
// Offset frequency by detune.
if (detune[k]) {
// Detune multiplies the frequency by 2^(detune[k] / 1200).
normalized_frequency *= exp2(detune[k] / 1200);
}
// Configure the biquad with the new filter parameters for the appropriate
// type of filter.
switch (GetBiquadProcessor()->GetType()) {
case BiquadProcessor::FilterType::kLowPass:
biquad_.SetLowpassParams(k, normalized_frequency, q[k]);
break;
case BiquadProcessor::FilterType::kHighPass:
biquad_.SetHighpassParams(k, normalized_frequency, q[k]);
break;
case BiquadProcessor::FilterType::kBandPass:
biquad_.SetBandpassParams(k, normalized_frequency, q[k]);
break;
case BiquadProcessor::FilterType::kLowShelf:
biquad_.SetLowShelfParams(k, normalized_frequency, gain[k]);
break;
case BiquadProcessor::FilterType::kHighShelf:
biquad_.SetHighShelfParams(k, normalized_frequency, gain[k]);
break;
case BiquadProcessor::FilterType::kPeaking:
biquad_.SetPeakingParams(k, normalized_frequency, q[k], gain[k]);
break;
case BiquadProcessor::FilterType::kNotch:
biquad_.SetNotchParams(k, normalized_frequency, q[k]);
break;
case BiquadProcessor::FilterType::kAllpass:
biquad_.SetAllpassParams(k, normalized_frequency, q[k]);
break;
}
}
UpdateTailTime(number_of_frames - 1);
}
void BiquadDSPKernel::UpdateTailTime(int coef_index) {
// TODO(crbug.com/1447095): A reasonable upper limit for the tail time. While
// it's easy to create biquad filters whose tail time can be much larger than
// this, limit the maximum to this value so that we don't keep such nodes
// alive "forever". Investigate if we can adjust this to a smaller value.
constexpr double kMaxTailTime = 30.0;
double sample_rate = SampleRate();
double tail =
biquad_.TailFrame(coef_index, kMaxTailTime * sample_rate) / sample_rate;
tail_time_ = ClampTo(tail, 0.0, kMaxTailTime);
}
void BiquadDSPKernel::Process(const float* source,
float* destination,
uint32_t frames_to_process) {
DCHECK(source);
DCHECK(destination);
DCHECK(GetBiquadProcessor());
// Recompute filter coefficients if any of the parameters have changed.
// FIXME: as an optimization, implement a way that a Biquad object can simply
// copy its internal filter coefficients from another Biquad object. Then
// re-factor this code to only run for the first BiquadDSPKernel of each
// BiquadProcessor.
// The audio thread can't block on this lock; skip updating the coefficients
// for this block if necessary. We'll get them the next time around.
{
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
UpdateCoefficientsIfNecessary(frames_to_process);
}
}
biquad_.Process(source, destination, frames_to_process);
}
void BiquadDSPKernel::GetFrequencyResponse(BiquadDSPKernel& kernel,
int n_frequencies,
const float* frequency_hz,
float* mag_response,
float* phase_response) {
// Only allow on the main thread because we don't want the audio thread to be
// updating `kernel` while we're computing the response.
DCHECK(IsMainThread());
DCHECK_GE(n_frequencies, 0);
DCHECK(frequency_hz);
DCHECK(mag_response);
DCHECK(phase_response);
Vector<float> frequency(n_frequencies);
double nyquist = kernel.Nyquist();
// Convert from frequency in Hz to normalized frequency (0 -> 1),
// with 1 equal to the Nyquist frequency.
for (int k = 0; k < n_frequencies; ++k) {
frequency[k] = frequency_hz[k] / nyquist;
}
kernel.biquad_.GetFrequencyResponse(n_frequencies, frequency.data(),
mag_response, phase_response);
}
bool BiquadDSPKernel::RequiresTailProcessing() const {
// Always return true even if the tail time and latency might both
// be zero. This is for simplicity and because TailTime() is 0
// basically only when the filter response H(z) = 0 or H(z) = 1. And
// it's ok to return true. It just means the node lives a little
// longer than strictly necessary.
return true;
}
double BiquadDSPKernel::TailTime() const {
return tail_time_;
}
double BiquadDSPKernel::LatencyTime() const {
return 0;
}
} // namespace blink
|