1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#include "third_party/blink/renderer/modules/webaudio/biquad_processor.h"
#include <memory>
#include "base/synchronization/lock.h"
#include "third_party/blink/renderer/modules/webaudio/biquad_dsp_kernel.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
namespace blink {
BiquadProcessor::BiquadProcessor(float sample_rate,
uint32_t number_of_channels,
unsigned render_quantum_frames,
AudioParamHandler& frequency,
AudioParamHandler& q,
AudioParamHandler& gain,
AudioParamHandler& detune)
: parameter1_(&frequency),
parameter2_(&q),
parameter3_(&gain),
parameter4_(&detune),
number_of_channels_(number_of_channels),
sample_rate_(sample_rate),
render_quantum_frames_(render_quantum_frames) {}
BiquadProcessor::~BiquadProcessor() {
if (IsInitialized()) {
Uninitialize();
}
}
std::unique_ptr<BiquadDSPKernel> BiquadProcessor::CreateKernel() {
return std::make_unique<BiquadDSPKernel>(this);
}
void BiquadProcessor::CheckForDirtyCoefficients() {
// The BiquadDSPKernel objects rely on this value to see if they need to
// re-compute their internal filter coefficients. Start out assuming filter
// parameters are not changing.
filter_coefficients_dirty_ = false;
has_sample_accurate_values_ = false;
if (parameter1_->HasSampleAccurateValues() ||
parameter2_->HasSampleAccurateValues() ||
parameter3_->HasSampleAccurateValues() ||
parameter4_->HasSampleAccurateValues()) {
// Coefficients are dirty if any of them has automations or if there are
// connections to the AudioParam.
filter_coefficients_dirty_ = true;
has_sample_accurate_values_ = true;
// If any parameter is a-rate, then the filter must do a-rate processing for
// everything.
is_audio_rate_ = parameter1_->IsAudioRate() || parameter2_->IsAudioRate() ||
parameter3_->IsAudioRate() || parameter4_->IsAudioRate();
} else {
if (has_just_reset_) {
// Snap to exact values first time after reset
previous_parameter1_ = std::numeric_limits<float>::quiet_NaN();
previous_parameter2_ = std::numeric_limits<float>::quiet_NaN();
previous_parameter3_ = std::numeric_limits<float>::quiet_NaN();
previous_parameter4_ = std::numeric_limits<float>::quiet_NaN();
filter_coefficients_dirty_ = true;
has_just_reset_ = false;
} else {
// If filter parameters have changed then mark coefficients as dirty.
const float parameter1_final = parameter1_->FinalValue();
const float parameter2_final = parameter2_->FinalValue();
const float parameter3_final = parameter3_->FinalValue();
const float parameter4_final = parameter4_->FinalValue();
if ((previous_parameter1_ != parameter1_final) ||
(previous_parameter2_ != parameter2_final) ||
(previous_parameter3_ != parameter3_final) ||
(previous_parameter4_ != parameter4_final)) {
filter_coefficients_dirty_ = true;
previous_parameter1_ = parameter1_final;
previous_parameter2_ = parameter2_final;
previous_parameter3_ = parameter3_final;
previous_parameter4_ = parameter4_final;
}
}
}
}
void BiquadProcessor::Initialize() {
if (IsInitialized()) {
return;
}
base::AutoLock locker(process_lock_);
DCHECK(!kernels_.size());
// Create processing kernels, one per channel.
for (unsigned i = 0; i < NumberOfChannels(); ++i) {
kernels_.push_back(CreateKernel());
}
initialized_ = true;
has_just_reset_ = true;
}
void BiquadProcessor::Uninitialize() {
if (!IsInitialized()) {
return;
}
base::AutoLock locker(process_lock_);
kernels_.clear();
initialized_ = false;
}
void BiquadProcessor::Process(const AudioBus* source,
AudioBus* destination,
uint32_t frames_to_process) {
if (!IsInitialized()) {
destination->Zero();
return;
}
// Synchronize with possible dynamic changes to the impulse response.
base::AutoTryLock try_locker(process_lock_);
if (!try_locker.is_acquired()) {
// Can't get the lock. We must be in the middle of changing something.
destination->Zero();
return;
}
CheckForDirtyCoefficients();
// For each channel of our input, process using the corresponding
// BiquadDSPKernel into the output channel.
for (unsigned i = 0; i < kernels_.size(); ++i) {
kernels_[i]->Process(source->Channel(i)->Data(),
destination->Channel(i)->MutableData(),
frames_to_process);
}
}
void BiquadProcessor::ProcessOnlyAudioParams(uint32_t frames_to_process) {
// TODO(crbug.com/40637820): Eventually, the render quantum size will no
// longer be hardcoded as 128. At that point, we'll need to switch from
// stack allocation to heap allocation.
constexpr unsigned render_quantum_frames_expected = 128;
CHECK_EQ(RenderQuantumFrames(), render_quantum_frames_expected);
DCHECK_LE(frames_to_process, render_quantum_frames_expected);
float values[render_quantum_frames_expected];
parameter1_->CalculateSampleAccurateValues(
base::span(values).first(frames_to_process));
parameter2_->CalculateSampleAccurateValues(
base::span(values).first(frames_to_process));
parameter3_->CalculateSampleAccurateValues(
base::span(values).first(frames_to_process));
parameter4_->CalculateSampleAccurateValues(
base::span(values).first(frames_to_process));
}
void BiquadProcessor::Reset() {
DCHECK(IsMainThread());
if (!IsInitialized()) {
return;
}
base::AutoLock locker(process_lock_);
for (auto& kernel : kernels_) {
kernel->Reset();
}
has_just_reset_ = true;
}
void BiquadProcessor::SetNumberOfChannels(unsigned number_of_channels) {
if (number_of_channels == number_of_channels_) {
return;
}
DCHECK(!IsInitialized());
number_of_channels_ = number_of_channels;
}
bool BiquadProcessor::RequiresTailProcessing() const {
// Always return true even if the tail time and latency might both be zero.
return true;
}
double BiquadProcessor::TailTime() const {
DCHECK(!IsMainThread());
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
// It is expected that all the kernels have the same tailTime.
return !kernels_.empty() ? kernels_.front()->TailTime() : 0;
}
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
double BiquadProcessor::LatencyTime() const {
DCHECK(!IsMainThread());
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
// It is expected that all the kernels have the same latencyTime.
return !kernels_.empty() ? kernels_.front()->LatencyTime() : 0;
}
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
void BiquadProcessor::SetType(FilterType type) {
if (type != type_) {
type_ = type;
Reset(); // The filter state must be reset only if the type has changed.
}
}
void BiquadProcessor::GetFrequencyResponse(int n_frequencies,
const float* frequency_hz,
float* mag_response,
float* phase_response) {
DCHECK(IsMainThread());
// Compute the frequency response on a separate temporary kernel
// to avoid interfering with the processing running in the audio
// thread on the main kernels.
std::unique_ptr<BiquadDSPKernel> response_kernel =
std::make_unique<BiquadDSPKernel>(this);
float cutoff_frequency;
float q;
float gain;
float detune; // in Cents
{
// Get a copy of the current biquad filter coefficients so we can update
// `response_kernel` with these values. We need to synchronize with
// `Process()` to prevent process() from updating the filter coefficients
// while we're trying to access them. Since this is on the main thread, we
// can wait. The audio thread will update the coefficients the next time
// around, it it were blocked.
base::AutoLock process_locker(process_lock_);
cutoff_frequency = Parameter1().Value();
q = Parameter2().Value();
gain = Parameter3().Value();
detune = Parameter4().Value();
}
response_kernel->UpdateCoefficients(1, &cutoff_frequency, &q, &gain, &detune);
BiquadDSPKernel::GetFrequencyResponse(*response_kernel, n_frequencies,
frequency_hz, mag_response,
phase_response);
}
} // namespace blink
|