1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/modules/webaudio/oscillator_handler.h"
#include <algorithm>
#include <array>
#include <limits>
#include "base/synchronization/lock.h"
#include "base/trace_event/typed_macros.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/modules/webaudio/audio_graph_tracer.h"
#include "third_party/blink/renderer/modules/webaudio/audio_node_output.h"
#include "third_party/blink/renderer/modules/webaudio/oscillator_node.h"
#include "third_party/blink/renderer/modules/webaudio/periodic_wave.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/bindings/enumeration_base.h"
#include "third_party/blink/renderer/platform/bindings/exception_state.h"
#include "third_party/blink/renderer/platform/heap/persistent.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/blink/renderer/platform/wtf/std_lib_extras.h"
namespace blink {
namespace {
// An oscillator is always mono.
constexpr unsigned kNumberOfOutputChannels = 1;
// Convert the detune value (in cents) to a frequency scale multiplier:
// 2^(d/1200)
float DetuneToFrequencyMultiplier(float detune_value) {
return std::exp2(detune_value / 1200);
}
// Clamp the frequency value to lie with Nyquist frequency. For NaN, arbitrarily
// clamp to +Nyquist.
void ClampFrequency(float* frequency, int frames_to_process, float nyquist) {
for (int k = 0; k < frames_to_process; ++k) {
float f = frequency[k];
if (std::isnan(f)) {
frequency[k] = nyquist;
} else {
frequency[k] = ClampTo(f, -nyquist, nyquist);
}
}
}
float DoInterpolation(double virtual_read_index,
float incr,
unsigned read_index_mask,
float table_interpolation_factor,
const float* lower_wave_data,
const float* higher_wave_data) {
DCHECK_GE(incr, 0);
DCHECK(std::isfinite(virtual_read_index));
double sample_lower = 0;
double sample_higher = 0;
unsigned read_index_0 = static_cast<unsigned>(virtual_read_index);
// Consider a typical sample rate of 44100 Hz and max periodic wave
// size of 4096. The relationship between `incr` and the frequency
// of the oscillator is `incr` = freq * 4096/44100. Or freq =
// `incr`*44100/4096 = 10.8*`incr`.
//
// For the `incr` thresholds below, this means that we use linear
// interpolation for all freq >= 3.2 Hz, 3-point Lagrange
// for freq >= 1.7 Hz and 5-point Lagrange for every thing else.
//
// We use Lagrange interpolation because it's relatively simple to
// implement and fairly inexpensive, and the interpolator always
// passes through known points.
if (incr >= OscillatorHandler::kInterpolate2Point) {
// Increment is fairly large, so we're doing no more than about 3
// points between each wave table entry. Assume linear
// interpolation between points is good enough.
unsigned read_index2 = read_index_0 + 1;
// Contain within valid range.
read_index_0 = read_index_0 & read_index_mask;
read_index2 = read_index2 & read_index_mask;
float sample1_lower = lower_wave_data[read_index_0];
float sample2_lower = lower_wave_data[read_index2];
float sample1_higher = higher_wave_data[read_index_0];
float sample2_higher = higher_wave_data[read_index2];
// Linearly interpolate within each table (lower and higher).
double interpolation_factor =
static_cast<float>(virtual_read_index) - read_index_0;
sample_higher = (1 - interpolation_factor) * sample1_higher +
interpolation_factor * sample2_higher;
sample_lower = (1 - interpolation_factor) * sample1_lower +
interpolation_factor * sample2_lower;
} else if (incr >= OscillatorHandler::kInterpolate3Point) {
// We're doing about 6 interpolation values between each wave
// table sample. Just use a 3-point Lagrange interpolator to get a
// better estimate than just linear.
//
// See 3-point formula in http://dlmf.nist.gov/3.3#ii
std::array<unsigned int, 3> read_index;
for (int k = -1; k <= 1; ++k) {
read_index[k + 1] = (read_index_0 + k) & read_index_mask;
}
std::array<double, 3> a;
double t = virtual_read_index - read_index_0;
a[0] = 0.5 * t * (t - 1);
a[1] = 1 - t * t;
a[2] = 0.5 * t * (t + 1);
for (int k = 0; k < 3; ++k) {
sample_lower += a[k] * lower_wave_data[read_index[k]];
sample_higher += a[k] * higher_wave_data[read_index[k]];
}
} else {
// For everything else (more than 6 points per entry), we'll do a
// 5-point Lagrange interpolator. This is a trade-off between
// quality and speed.
//
// See 5-point formula in http://dlmf.nist.gov/3.3#ii
std::array<unsigned int, 5> read_index;
for (int k = -2; k <= 2; ++k) {
read_index[k + 2] = (read_index_0 + k) & read_index_mask;
}
std::array<double, 5> a;
double t = virtual_read_index - read_index_0;
double t2 = t * t;
a[0] = t * (t2 - 1) * (t - 2) / 24;
a[1] = -t * (t - 1) * (t2 - 4) / 6;
a[2] = (t2 - 1) * (t2 - 4) / 4;
a[3] = -t * (t + 1) * (t2 - 4) / 6;
a[4] = t * (t2 - 1) * (t + 2) / 24;
for (int k = 0; k < 5; ++k) {
sample_lower += a[k] * lower_wave_data[read_index[k]];
sample_higher += a[k] * higher_wave_data[read_index[k]];
}
}
// Then interpolate between the two tables.
float sample = (1 - table_interpolation_factor) * sample_higher +
table_interpolation_factor * sample_lower;
return sample;
}
} // namespace
OscillatorHandler::OscillatorHandler(AudioNode& node,
float sample_rate,
const String& oscillator_type,
PeriodicWaveImpl* wave_table,
AudioParamHandler& frequency,
AudioParamHandler& detune)
: AudioScheduledSourceHandler(NodeType::kNodeTypeOscillator,
node,
sample_rate),
frequency_(&frequency),
detune_(&detune),
phase_increments_(GetDeferredTaskHandler().RenderQuantumFrames()),
detune_values_(GetDeferredTaskHandler().RenderQuantumFrames()) {
if (wave_table) {
// A PeriodicWave overrides any value for the oscillator type,
// forcing the type to be "custom".
SetPeriodicWave(wave_table);
} else {
if (oscillator_type == "sine") {
SetType(SINE);
} else if (oscillator_type == "square") {
SetType(SQUARE);
} else if (oscillator_type == "sawtooth") {
SetType(SAWTOOTH);
} else if (oscillator_type == "triangle") {
SetType(TRIANGLE);
} else {
NOTREACHED();
}
}
AddOutput(kNumberOfOutputChannels);
Initialize();
}
scoped_refptr<OscillatorHandler> OscillatorHandler::Create(
AudioNode& node,
float sample_rate,
const String& oscillator_type,
PeriodicWaveImpl* wave_table,
AudioParamHandler& frequency,
AudioParamHandler& detune) {
return base::AdoptRef(new OscillatorHandler(
node, sample_rate, oscillator_type, wave_table, frequency, detune));
}
OscillatorHandler::~OscillatorHandler() {
Uninitialize();
}
V8OscillatorType::Enum OscillatorHandler::GetType() const {
switch (type_) {
case SINE:
return V8OscillatorType::Enum::kSine;
case SQUARE:
return V8OscillatorType::Enum::kSquare;
case SAWTOOTH:
return V8OscillatorType::Enum::kSawtooth;
case TRIANGLE:
return V8OscillatorType::Enum::kTriangle;
case CUSTOM:
return V8OscillatorType::Enum::kCustom;
default:
NOTREACHED();
}
}
void OscillatorHandler::SetType(V8OscillatorType::Enum type,
ExceptionState& exception_state) {
switch (type) {
case V8OscillatorType::Enum::kSine:
SetType(SINE);
return;
case V8OscillatorType::Enum::kSquare:
SetType(SQUARE);
return;
case V8OscillatorType::Enum::kSawtooth:
SetType(SAWTOOTH);
return;
case V8OscillatorType::Enum::kTriangle:
SetType(TRIANGLE);
return;
case V8OscillatorType::Enum::kCustom:
exception_state.ThrowDOMException(DOMExceptionCode::kInvalidStateError,
"'type' cannot be set directly to "
"'custom'. Use setPeriodicWave() to "
"create a custom Oscillator type.");
return;
}
NOTREACHED();
}
bool OscillatorHandler::SetType(uint8_t type) {
PeriodicWave* periodic_wave = nullptr;
switch (type) {
case SINE:
periodic_wave = Context()->GetPeriodicWave(SINE);
break;
case SQUARE:
periodic_wave = Context()->GetPeriodicWave(SQUARE);
break;
case SAWTOOTH:
periodic_wave = Context()->GetPeriodicWave(SAWTOOTH);
break;
case TRIANGLE:
periodic_wave = Context()->GetPeriodicWave(TRIANGLE);
break;
case CUSTOM:
default:
// Return false for invalid types, including CUSTOM since
// setPeriodicWave() method must be called explicitly.
NOTREACHED();
}
SetPeriodicWave(periodic_wave->impl());
type_ = type;
return true;
}
bool OscillatorHandler::CalculateSampleAccuratePhaseIncrements(
uint32_t frames_to_process) {
DCHECK_LE(frames_to_process, phase_increments_.size());
DCHECK_LE(frames_to_process, detune_values_.size());
if (first_render_) {
first_render_ = false;
}
bool has_sample_accurate_values = false;
bool has_frequency_changes = false;
base::span<float> phase_increments = phase_increments_.as_span();
float final_scale = periodic_wave_->RateScale();
if (frequency_->HasSampleAccurateValues() && frequency_->IsAudioRate()) {
has_sample_accurate_values = true;
has_frequency_changes = true;
// Get the sample-accurate frequency values and convert to phase increments.
// They will be converted to phase increments below.
frequency_->CalculateSampleAccurateValues(
phase_increments_.as_span().first(frames_to_process));
} else {
// Handle ordinary parameter changes if there are no scheduled changes.
float frequency = frequency_->FinalValue();
final_scale *= frequency;
}
if (detune_->HasSampleAccurateValues() && detune_->IsAudioRate()) {
has_sample_accurate_values = true;
// Get the sample-accurate detune values.
base::span<float> detune_values =
has_frequency_changes
? detune_values_.as_span().first(frames_to_process)
: phase_increments;
detune_->CalculateSampleAccurateValues(detune_values);
// Convert from cents to rate scalar.
float k = 1.0 / 1200;
vector_math::Vsmul(detune_values.data(), 1, &k, detune_values.data(), 1,
frames_to_process);
for (unsigned i = 0; i < frames_to_process; ++i) {
detune_values[i] = std::exp2(detune_values[i]);
}
if (has_frequency_changes) {
// Multiply frequencies by detune scalings.
vector_math::Vmul(detune_values.data(), 1, phase_increments.data(), 1,
phase_increments.data(), 1, frames_to_process);
}
} else {
// Handle ordinary parameter changes if there are no scheduled
// changes.
float detune = detune_->FinalValue();
float detune_scale = DetuneToFrequencyMultiplier(detune);
final_scale *= detune_scale;
}
if (has_sample_accurate_values) {
ClampFrequency(phase_increments.data(), frames_to_process,
Context()->sampleRate() / 2);
// Convert from frequency to wavetable increment.
vector_math::Vsmul(phase_increments.data(), 1, &final_scale,
phase_increments.data(), 1, frames_to_process);
}
return has_sample_accurate_values;
}
#if !(defined(ARCH_CPU_X86_FAMILY) || defined(CPU_ARM_NEON))
// Vector operations not supported, so there's nothing to do except return 0 and
// virtual_read_index. The scalar version will do the necessary processing.
std::tuple<int, double> OscillatorHandler::ProcessKRateVector(
int n,
float* dest_p,
double virtual_read_index,
float frequency,
float rate_scale) const {
DCHECK_GE(frequency * rate_scale, kInterpolate2Point);
return std::make_tuple(0, virtual_read_index);
}
#endif
#if !(defined(ARCH_CPU_X86_FAMILY) || defined(CPU_ARM_NEON))
double OscillatorHandler::ProcessARateVectorKernel(
float* dest_p,
double virtual_read_index,
const float* phase_increments,
unsigned periodic_wave_size,
const float* const lower_wave_data[4],
const float* const higher_wave_data[4],
const float table_interpolation_factor[4]) const {
double inv_periodic_wave_size = 1.0 / periodic_wave_size;
unsigned read_index_mask = periodic_wave_size - 1;
for (int m = 0; m < 4; ++m) {
unsigned read_index_0 = static_cast<unsigned>(virtual_read_index);
// Increment is fairly large, so we're doing no more than about 3
// points between each wave table entry. Assume linear
// interpolation between points is good enough.
unsigned read_index2 = read_index_0 + 1;
// Contain within valid range.
read_index_0 = read_index_0 & read_index_mask;
read_index2 = read_index2 & read_index_mask;
float sample1_lower = lower_wave_data[m][read_index_0];
float sample2_lower = lower_wave_data[m][read_index2];
float sample1_higher = higher_wave_data[m][read_index_0];
float sample2_higher = higher_wave_data[m][read_index2];
// Linearly interpolate within each table (lower and higher).
double interpolation_factor =
static_cast<float>(virtual_read_index) - read_index_0;
// Doing linear interpolation via x0 + f*(x1-x0) gives slightly
// different results from (1-f)*x0 + f*x1, but requires fewer
// operations. This causes a very slight decrease in SNR (< 0.05 dB) in
// oscillator sweep tests.
float sample_higher =
sample1_higher +
interpolation_factor * (sample2_higher - sample1_higher);
float sample_lower =
sample1_lower + interpolation_factor * (sample2_lower - sample1_lower);
// Then interpolate between the two tables.
float sample = sample_higher + table_interpolation_factor[m] *
(sample_lower - sample_higher);
dest_p[m] = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtual_read_index += phase_increments[m];
virtual_read_index -=
floor(virtual_read_index * inv_periodic_wave_size) * periodic_wave_size;
}
return virtual_read_index;
}
#endif
double OscillatorHandler::ProcessKRateScalar(int start,
int n,
float* dest_p,
double virtual_read_index,
float frequency,
float rate_scale) const {
const unsigned periodic_wave_size = periodic_wave_->PeriodicWaveSize();
const double inv_periodic_wave_size = 1.0 / periodic_wave_size;
const unsigned read_index_mask = periodic_wave_size - 1;
float* higher_wave_data = nullptr;
float* lower_wave_data = nullptr;
float table_interpolation_factor = 0;
periodic_wave_->WaveDataForFundamentalFrequency(
frequency, lower_wave_data, higher_wave_data, table_interpolation_factor);
const float incr = frequency * rate_scale;
DCHECK_GE(incr, kInterpolate2Point);
for (int k = start; k < n; ++k) {
// Get indices for the current and next sample, and contain them within the
// valid range
const unsigned read_index_0 =
static_cast<unsigned>(virtual_read_index) & read_index_mask;
const unsigned read_index_1 = (read_index_0 + 1) & read_index_mask;
const float sample1_lower = lower_wave_data[read_index_0];
const float sample2_lower = lower_wave_data[read_index_1];
const float sample1_higher = higher_wave_data[read_index_0];
const float sample2_higher = higher_wave_data[read_index_1];
// Linearly interpolate within each table (lower and higher).
const float interpolation_factor =
static_cast<float>(virtual_read_index) - read_index_0;
const float sample_higher =
sample1_higher +
interpolation_factor * (sample2_higher - sample1_higher);
const float sample_lower =
sample1_lower + interpolation_factor * (sample2_lower - sample1_lower);
// Then interpolate between the two tables.
const float sample = sample_higher + table_interpolation_factor *
(sample_lower - sample_higher);
dest_p[k] = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtual_read_index += incr;
virtual_read_index -=
floor(virtual_read_index * inv_periodic_wave_size) * periodic_wave_size;
}
return virtual_read_index;
}
double OscillatorHandler::ProcessKRate(int n,
float* dest_p,
double virtual_read_index) const {
const unsigned periodic_wave_size = periodic_wave_->PeriodicWaveSize();
const double inv_periodic_wave_size = 1.0 / periodic_wave_size;
const unsigned read_index_mask = periodic_wave_size - 1;
float* higher_wave_data = nullptr;
float* lower_wave_data = nullptr;
float table_interpolation_factor = 0;
float frequency = frequency_->FinalValue();
const float detune_scale = DetuneToFrequencyMultiplier(detune_->FinalValue());
frequency *= detune_scale;
ClampFrequency(&frequency, 1, Context()->sampleRate() / 2);
periodic_wave_->WaveDataForFundamentalFrequency(
frequency, lower_wave_data, higher_wave_data, table_interpolation_factor);
const float rate_scale = periodic_wave_->RateScale();
const float incr = frequency * rate_scale;
if (incr >= kInterpolate2Point) {
int k;
double v_index = virtual_read_index;
std::tie(k, v_index) =
ProcessKRateVector(n, dest_p, v_index, frequency, rate_scale);
if (k < n) {
// In typical cases, this won't be run because the number of frames is 128
// so the vector version will process all the samples.
v_index =
ProcessKRateScalar(k, n, dest_p, v_index, frequency, rate_scale);
}
// Recompute to reduce round-off introduced when processing the samples
// above.
virtual_read_index += n * incr;
virtual_read_index -=
floor(virtual_read_index * inv_periodic_wave_size) * periodic_wave_size;
} else {
for (int k = 0; k < n; ++k) {
float sample = DoInterpolation(
virtual_read_index, fabs(incr), read_index_mask,
table_interpolation_factor, lower_wave_data, higher_wave_data);
*dest_p++ = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtual_read_index += incr;
virtual_read_index -= floor(virtual_read_index * inv_periodic_wave_size) *
periodic_wave_size;
}
}
return virtual_read_index;
}
std::tuple<int, double> OscillatorHandler::ProcessARateVector(
int n,
float* destination,
double virtual_read_index,
const float* phase_increments) const {
float rate_scale = periodic_wave_->RateScale();
float inv_rate_scale = 1 / rate_scale;
unsigned periodic_wave_size = periodic_wave_->PeriodicWaveSize();
double inv_periodic_wave_size = 1.0 / periodic_wave_size;
unsigned read_index_mask = periodic_wave_size - 1;
std::array<float*, 4> higher_wave_data;
std::array<float*, 4> lower_wave_data;
std::array<float, 4> table_interpolation_factor __attribute__((aligned(16)));
int k = 0;
int n_loops = n / 4;
for (int loop = 0; loop < n_loops; ++loop, k += 4) {
bool is_big_increment = true;
std::array<float, 4> frequency;
for (int m = 0; m < 4; ++m) {
float phase_incr = phase_increments[k + m];
is_big_increment =
is_big_increment && (fabs(phase_incr) >= kInterpolate2Point);
frequency[m] = inv_rate_scale * phase_incr;
}
periodic_wave_->WaveDataForFundamentalFrequency(
frequency.data(), lower_wave_data.data(), higher_wave_data.data(),
table_interpolation_factor.data());
// If all the phase increments are large enough, we can use linear
// interpolation with a possibly vectorized implementation. If not, we need
// to call DoInterpolation to handle it correctly.
if (is_big_increment) {
virtual_read_index = ProcessARateVectorKernel(
destination + k, virtual_read_index, phase_increments + k,
periodic_wave_size, lower_wave_data.data(), higher_wave_data.data(),
table_interpolation_factor.data());
} else {
for (int m = 0; m < 4; ++m) {
float sample =
DoInterpolation(virtual_read_index, fabs(phase_increments[k + m]),
read_index_mask, table_interpolation_factor[m],
lower_wave_data[m], higher_wave_data[m]);
destination[k + m] = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtual_read_index += phase_increments[k + m];
virtual_read_index -=
floor(virtual_read_index * inv_periodic_wave_size) *
periodic_wave_size;
}
}
}
return std::make_tuple(k, virtual_read_index);
}
double OscillatorHandler::ProcessARateScalar(
int k,
int n,
float* destination,
double virtual_read_index,
const float* phase_increments) const {
float rate_scale = periodic_wave_->RateScale();
float inv_rate_scale = 1 / rate_scale;
unsigned periodic_wave_size = periodic_wave_->PeriodicWaveSize();
double inv_periodic_wave_size = 1.0 / periodic_wave_size;
unsigned read_index_mask = periodic_wave_size - 1;
float* higher_wave_data = nullptr;
float* lower_wave_data = nullptr;
float table_interpolation_factor = 0;
for (int m = k; m < n; ++m) {
float incr = phase_increments[m];
float frequency = inv_rate_scale * incr;
periodic_wave_->WaveDataForFundamentalFrequency(frequency, lower_wave_data,
higher_wave_data,
table_interpolation_factor);
float sample = DoInterpolation(virtual_read_index, fabs(incr),
read_index_mask, table_interpolation_factor,
lower_wave_data, higher_wave_data);
destination[m] = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtual_read_index += incr;
virtual_read_index -=
floor(virtual_read_index * inv_periodic_wave_size) * periodic_wave_size;
}
return virtual_read_index;
}
double OscillatorHandler::ProcessARate(int n,
float* destination,
double virtual_read_index,
float* phase_increments) const {
int frames_processed = 0;
std::tie(frames_processed, virtual_read_index) =
ProcessARateVector(n, destination, virtual_read_index, phase_increments);
virtual_read_index = ProcessARateScalar(frames_processed, n, destination,
virtual_read_index, phase_increments);
return virtual_read_index;
}
void OscillatorHandler::Process(uint32_t frames_to_process) {
TRACE_EVENT(TRACE_DISABLED_BY_DEFAULT("webaudio.audionode"),
"OscillatorHandler::Process", "this",
reinterpret_cast<void*>(this), "type", GetType());
AudioBus* output_bus = Output(0).Bus();
if (!IsInitialized() || !output_bus->NumberOfChannels()) {
output_bus->Zero();
return;
}
DCHECK_LE(frames_to_process, phase_increments_.size());
// The audio thread can't block on this lock, so we call tryLock() instead.
base::AutoTryLock try_locker(process_lock_);
if (!try_locker.is_acquired()) {
// Too bad - the tryLock() failed. We must be in the middle of changing
// wave-tables.
output_bus->Zero();
return;
}
// We must access m_periodicWave only inside the lock.
if (!periodic_wave_.Get()) {
output_bus->Zero();
return;
}
size_t quantum_frame_offset;
uint32_t non_silent_frames_to_process;
double start_frame_offset;
std::tie(quantum_frame_offset, non_silent_frames_to_process,
start_frame_offset) =
UpdateSchedulingInfo(frames_to_process, output_bus);
if (!non_silent_frames_to_process) {
output_bus->Zero();
return;
}
unsigned periodic_wave_size = periodic_wave_->PeriodicWaveSize();
float* dest_p = output_bus->Channel(0)->MutableData();
DCHECK_LE(quantum_frame_offset, frames_to_process);
// We keep virtualReadIndex double-precision since we're accumulating values.
double virtual_read_index = virtual_read_index_;
float rate_scale = periodic_wave_->RateScale();
bool has_sample_accurate_values =
CalculateSampleAccuratePhaseIncrements(frames_to_process);
float frequency = 0;
float* higher_wave_data = nullptr;
float* lower_wave_data = nullptr;
float table_interpolation_factor = 0;
if (!has_sample_accurate_values) {
frequency = frequency_->FinalValue();
float detune = detune_->FinalValue();
float detune_scale = DetuneToFrequencyMultiplier(detune);
frequency *= detune_scale;
ClampFrequency(&frequency, 1, Context()->sampleRate() / 2);
periodic_wave_->WaveDataForFundamentalFrequency(frequency, lower_wave_data,
higher_wave_data,
table_interpolation_factor);
}
float* phase_increments = phase_increments_.Data();
// Start rendering at the correct offset.
dest_p += quantum_frame_offset;
int n = non_silent_frames_to_process;
// If startFrameOffset is not 0, that means the oscillator doesn't actually
// start at quantumFrameOffset, but just past that time. Adjust destP and n
// to reflect that, and adjust virtualReadIndex to start the value at
// startFrameOffset.
if (start_frame_offset > 0) {
++dest_p;
--n;
virtual_read_index += (1 - start_frame_offset) * frequency * rate_scale;
DCHECK(virtual_read_index < periodic_wave_size);
} else if (start_frame_offset < 0) {
virtual_read_index = -start_frame_offset * frequency * rate_scale;
}
if (has_sample_accurate_values) {
virtual_read_index =
ProcessARate(n, dest_p, virtual_read_index, phase_increments);
} else {
virtual_read_index = ProcessKRate(n, dest_p, virtual_read_index);
}
virtual_read_index_ = virtual_read_index;
output_bus->ClearSilentFlag();
}
void OscillatorHandler::SetPeriodicWave(PeriodicWaveImpl* periodic_wave) {
DCHECK(IsMainThread());
DCHECK(periodic_wave);
// This synchronizes with process().
base::AutoLock process_locker(process_lock_);
periodic_wave_ = periodic_wave;
type_ = CUSTOM;
}
bool OscillatorHandler::PropagatesSilence() const {
return !IsPlayingOrScheduled() || HasFinished() || !periodic_wave_;
}
base::WeakPtr<AudioScheduledSourceHandler> OscillatorHandler::AsWeakPtr() {
return weak_ptr_factory_.GetWeakPtr();
}
void OscillatorHandler::HandleStoppableSourceNode() {
double now = Context()->currentTime();
base::AutoTryLock try_locker(process_lock_);
if (!try_locker.is_acquired()) {
// Can't get the lock, so just return. It's ok to handle these at a later
// time; this was just a hint anyway so stopping them a bit later is ok.
return;
}
// If we know the end time, and the source was started and the current time is
// definitely past the end time, we can stop this node. (This handles the
// case where the this source is not connected to the destination and we want
// to stop it.)
if (end_time_ != kUnknownTime && IsPlayingOrScheduled() &&
now >= end_time_ + kExtraStopFrames / Context()->sampleRate()) {
Finish();
}
}
} // namespace blink
|