1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
|
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/modules/webaudio/periodic_wave.h"
#include <algorithm>
#include <array>
#include <memory>
#include "build/build_config.h"
#include "third_party/blink/renderer/bindings/modules/v8/v8_periodic_wave_options.h"
#include "third_party/blink/renderer/modules/webaudio/base_audio_context.h"
#include "third_party/blink/renderer/modules/webaudio/oscillator_node.h"
#include "third_party/blink/renderer/platform/audio/fft_frame.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/bindings/exception_messages.h"
#include "third_party/blink/renderer/platform/bindings/exception_state.h"
#include "third_party/blink/renderer/platform/bindings/script_wrappable.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#if defined(ARCH_CPU_X86_FAMILY)
#include <xmmintrin.h>
#elif defined(CPU_ARM_NEON)
#include <arm_neon.h>
#endif
namespace blink {
namespace {
// The number of bands per octave. Each octave will have this many entries in
// the wave tables.
constexpr unsigned kNumberOfOctaveBands = 3;
// The max length of a periodic wave. This must be a power of two greater than
// or equal to 2048 and must be supported by the FFT routines.
constexpr unsigned kMaxPeriodicWaveSize = 16384;
constexpr float kCentsPerRange = 1200 / kNumberOfOctaveBands;
} // namespace
PeriodicWave* PeriodicWave::Create(BaseAudioContext& context,
const Vector<float>& real,
const Vector<float>& imag,
bool disable_normalization,
ExceptionState& exception_state) {
DCHECK(IsMainThread());
if (real.size() != imag.size()) {
exception_state.ThrowDOMException(
DOMExceptionCode::kIndexSizeError,
"length of real array (" + String::Number(real.size()) +
") and length of imaginary array (" + String::Number(imag.size()) +
") must match.");
return nullptr;
}
if (real.size() < 2) {
exception_state.ThrowDOMException(
DOMExceptionCode::kIndexSizeError,
ExceptionMessages::IndexExceedsMinimumBound("length of the real array",
real.size(), 2u));
return nullptr;
}
if (imag.size() < 2) {
exception_state.ThrowDOMException(
DOMExceptionCode::kIndexSizeError,
ExceptionMessages::IndexExceedsMinimumBound("length of the imag array",
imag.size(), 2u));
return nullptr;
}
PeriodicWave* periodic_wave =
MakeGarbageCollected<PeriodicWave>(context.sampleRate());
periodic_wave->impl()->CreateBandLimitedTables(
real.data(), imag.data(), real.size(), disable_normalization);
return periodic_wave;
}
PeriodicWave* PeriodicWave::Create(BaseAudioContext* context,
const PeriodicWaveOptions* options,
ExceptionState& exception_state) {
bool normalize = options->disableNormalization();
Vector<float> real_coef;
Vector<float> imag_coef;
if (options->hasReal()) {
real_coef = options->real();
if (options->hasImag()) {
imag_coef = options->imag();
} else {
imag_coef.resize(real_coef.size());
}
} else if (options->hasImag()) {
// `real()` not given, but we have `imag()`.
imag_coef = options->imag();
real_coef.resize(imag_coef.size());
} else {
// Neither `real()` nor `imag()` given. Return an object that would
// generate a sine wave, which means real = [0,0], and imag = [0, 1]
real_coef.resize(2);
imag_coef.resize(2);
imag_coef[1] = 1;
}
return Create(*context, real_coef, imag_coef, normalize, exception_state);
}
PeriodicWave* PeriodicWave::CreateSine(float sample_rate) {
PeriodicWave* periodic_wave = MakeGarbageCollected<PeriodicWave>(sample_rate);
periodic_wave->impl()->GenerateBasicWaveform(OscillatorHandler::SINE);
return periodic_wave;
}
PeriodicWave* PeriodicWave::CreateSquare(float sample_rate) {
PeriodicWave* periodic_wave = MakeGarbageCollected<PeriodicWave>(sample_rate);
periodic_wave->impl()->GenerateBasicWaveform(OscillatorHandler::SQUARE);
return periodic_wave;
}
PeriodicWave* PeriodicWave::CreateSawtooth(float sample_rate) {
PeriodicWave* periodic_wave = MakeGarbageCollected<PeriodicWave>(sample_rate);
periodic_wave->impl()->GenerateBasicWaveform(OscillatorHandler::SAWTOOTH);
return periodic_wave;
}
PeriodicWave* PeriodicWave::CreateTriangle(float sample_rate) {
PeriodicWave* periodic_wave = MakeGarbageCollected<PeriodicWave>(sample_rate);
periodic_wave->impl()->GenerateBasicWaveform(OscillatorHandler::TRIANGLE);
return periodic_wave;
}
PeriodicWave::PeriodicWave(float sample_rate)
: periodic_wave_impl_(MakeGarbageCollected<PeriodicWaveImpl>(sample_rate)) {
}
void PeriodicWave::Trace(Visitor* visitor) const {
visitor->Trace(periodic_wave_impl_);
ScriptWrappable::Trace(visitor);
}
PeriodicWaveImpl::PeriodicWaveImpl(float sample_rate)
: sample_rate_(sample_rate), cents_per_range_(kCentsPerRange) {
float nyquist = 0.5 * sample_rate_;
lowest_fundamental_frequency_ = nyquist / MaxNumberOfPartials();
rate_scale_ = PeriodicWaveSize() / sample_rate_;
// Compute the number of ranges needed to cover the entire frequency range,
// assuming kNumberOfOctaveBands per octave.
number_of_ranges_ = 0.5 + kNumberOfOctaveBands * log2f(PeriodicWaveSize());
}
PeriodicWaveImpl::~PeriodicWaveImpl() {
external_memory_accounter_.Clear(v8::Isolate::GetCurrent());
}
unsigned PeriodicWaveImpl::PeriodicWaveSize() const {
// Choose an appropriate wave size for the given sample rate. This allows us
// to use shorter FFTs when possible to limit the complexity. The breakpoints
// here are somewhat arbitrary, but we want sample rates around 44.1 kHz or so
// to have a size of 4096 to preserve backward compatibility.
if (sample_rate_ <= 24000) {
return 2048;
}
if (sample_rate_ <= 88200) {
return 4096;
}
return kMaxPeriodicWaveSize;
}
unsigned PeriodicWaveImpl::MaxNumberOfPartials() const {
return PeriodicWaveSize() / 2;
}
void PeriodicWaveImpl::WaveDataForFundamentalFrequency(
float fundamental_frequency,
float*& lower_wave_data,
float*& higher_wave_data,
float& table_interpolation_factor) {
// Negative frequencies are allowed, in which case we alias to the positive
// frequency.
fundamental_frequency = fabsf(fundamental_frequency);
// Calculate the pitch range.
float ratio = fundamental_frequency > 0
? fundamental_frequency / lowest_fundamental_frequency_
: 0.5;
float cents_above_lowest_frequency = log2f(ratio) * 1200;
// Add one to round-up to the next range just in time to truncate partials
// before aliasing occurs.
float pitch_range = 1 + cents_above_lowest_frequency / cents_per_range_;
pitch_range = std::max(pitch_range, 0.0f);
pitch_range = std::min(pitch_range, static_cast<float>(NumberOfRanges() - 1));
// The words "lower" and "higher" refer to the table data having the lower and
// higher numbers of partials. It's a little confusing since the range index
// gets larger the more partials we cull out. So the lower table data will
// have a larger range index.
unsigned range_index1 = static_cast<unsigned>(pitch_range);
unsigned range_index2 =
range_index1 < NumberOfRanges() - 1 ? range_index1 + 1 : range_index1;
lower_wave_data = band_limited_tables_[range_index2]->Data();
higher_wave_data = band_limited_tables_[range_index1]->Data();
// Ranges from 0 -> 1 to interpolate between lower -> higher.
table_interpolation_factor = pitch_range - range_index1;
}
#if defined(ARCH_CPU_X86_FAMILY)
void PeriodicWaveImpl::WaveDataForFundamentalFrequency(
const float fundamental_frequency[4],
float* lower_wave_data[4],
float* higher_wave_data[4],
float table_interpolation_factor[4]) {
// Negative frequencies are allowed, in which case we alias to the positive
// frequency. SSE2 doesn't have an fabs instruction, so just remove the sign
// bit of the float numbers, effecitvely taking the absolute value.
const __m128 frequency =
_mm_and_ps(_mm_loadu_ps(fundamental_frequency),
reinterpret_cast<__m128>(_mm_set1_epi32(0x7fffffff)));
// pos = 0xffffffff if freq > 0; otherwise 0
const __m128 pos = _mm_cmpgt_ps(frequency, _mm_set1_ps(0));
// Calculate the pitch range.
__m128 v_ratio =
_mm_div_ps(frequency, _mm_set1_ps(lowest_fundamental_frequency_));
// Set v_ratio to 0 if freq <= 0; otherwise keep the ratio.
v_ratio = _mm_and_ps(v_ratio, pos);
// If pos = 0, set value to 0.5 and 0 otherwise. Or this into v_ratio so that
// v_ratio is 0.5 if freq <= 0. Otherwise preserve v_ratio.
v_ratio = _mm_or_ps(v_ratio, _mm_andnot_ps(pos, _mm_set1_ps(0.5)));
const float* ratio = reinterpret_cast<float*>(&v_ratio);
std::array<float, 4> cents_above_lowest_frequency
__attribute__((aligned(16)));
for (int k = 0; k < 4; ++k) {
cents_above_lowest_frequency[k] = log2f(ratio[k]) * 1200;
}
__m128 v_pitch_range =
_mm_add_ps(_mm_set1_ps(1.0),
_mm_div_ps(_mm_load_ps(cents_above_lowest_frequency.data()),
_mm_set1_ps((cents_per_range_))));
v_pitch_range = _mm_max_ps(v_pitch_range, _mm_set1_ps(0.0));
v_pitch_range = _mm_min_ps(v_pitch_range, _mm_set1_ps(NumberOfRanges() - 1));
const __m128i v_index1 = _mm_cvttps_epi32(v_pitch_range);
__m128i v_index2 = _mm_add_epi32(v_index1, _mm_set1_epi32(1));
// SSE2 deosn't have _mm_min_epi32 (but SSE4.2 does).
//
// The following ought to work because the small integers for the index and
// number of ranges should look like tiny denormals that should compare in the
// same order as integers. This doesn't work because we have flush-to-zero
// enabled.
//
// __m128i v_range = _mm_set1_epi32(NumberOfRanges() - 1);
// v_index2 = _mm_min_ps(v_index2, v_range);
//
// Instead we convert to float, take the min and convert back. No round off
// because the integers are small.
v_index2 = _mm_cvttps_epi32(
_mm_min_ps(_mm_cvtepi32_ps(v_index2), _mm_set1_ps(NumberOfRanges() - 1)));
const __m128 table_factor =
_mm_sub_ps(v_pitch_range, _mm_cvtepi32_ps(v_index1));
_mm_storeu_ps(table_interpolation_factor, table_factor);
const unsigned* range_index1 = reinterpret_cast<const unsigned*>(&v_index1);
const unsigned* range_index2 = reinterpret_cast<const unsigned*>(&v_index2);
for (int k = 0; k < 4; ++k) {
lower_wave_data[k] = band_limited_tables_[range_index2[k]]->Data();
higher_wave_data[k] = band_limited_tables_[range_index1[k]]->Data();
}
}
#elif defined(CPU_ARM_NEON)
void PeriodicWaveImpl::WaveDataForFundamentalFrequency(
const float fundamental_frequency[4],
float* lower_wave_data[4],
float* higher_wave_data[4],
float table_interpolation_factor[4]) {
// Negative frequencies are allowed, in which case we alias to the positive
// frequency.
float32x4_t frequency = vabsq_f32(vld1q_f32(fundamental_frequency));
// pos = 0xffffffff if frequency > 0; otherwise 0.
uint32x4_t pos = vcgtq_f32(frequency, vdupq_n_f32(0));
// v_ratio = frequency / lowest_fundamental_frequency_. But NEON
// doesn't have a division instruction, so multiply by reciprocal.
// (Aarch64 does, though).
float32x4_t v_ratio =
vmulq_f32(frequency, vdupq_n_f32(1 / lowest_fundamental_frequency_));
// Select v_ratio or 0.5 depending on whether pos is all ones or all
// zeroes.
v_ratio = vbslq_f32(pos, v_ratio, vdupq_n_f32(0.5));
float ratio[4] __attribute__((aligned(16)));
vst1q_f32(ratio, v_ratio);
float cents_above_lowest_frequency[4] __attribute__((aligned(16)));
for (int k = 0; k < 4; ++k) {
cents_above_lowest_frequency[k] = log2f(ratio[k]) * 1200;
}
float32x4_t v_pitch_range = vaddq_f32(
vdupq_n_f32(1.0), vmulq_f32(vld1q_f32(cents_above_lowest_frequency),
vdupq_n_f32(1 / cents_per_range_)));
v_pitch_range = vmaxq_f32(v_pitch_range, vdupq_n_f32(0));
v_pitch_range = vminq_f32(v_pitch_range, vdupq_n_f32(NumberOfRanges() - 1));
const uint32x4_t v_index1 = vcvtq_u32_f32(v_pitch_range);
uint32x4_t v_index2 = vaddq_u32(v_index1, vdupq_n_u32(1));
v_index2 = vminq_u32(v_index2, vdupq_n_u32(NumberOfRanges() - 1));
uint32_t range_index1[4] __attribute__((aligned(16)));
uint32_t range_index2[4] __attribute__((aligned(16)));
vst1q_u32(range_index1, v_index1);
vst1q_u32(range_index2, v_index2);
const float32x4_t table_factor =
vsubq_f32(v_pitch_range, vcvtq_f32_u32(v_index1));
vst1q_f32(table_interpolation_factor, table_factor);
for (int k = 0; k < 4; ++k) {
lower_wave_data[k] = band_limited_tables_[range_index2[k]]->Data();
higher_wave_data[k] = band_limited_tables_[range_index1[k]]->Data();
}
}
#else
void PeriodicWaveImpl::WaveDataForFundamentalFrequency(
const float fundamental_frequency[4],
float* lower_wave_data[4],
float* higher_wave_data[4],
float table_interpolation_factor[4]) {
for (int k = 0; k < 4; ++k) {
WaveDataForFundamentalFrequency(fundamental_frequency[k],
lower_wave_data[k], higher_wave_data[k],
table_interpolation_factor[k]);
}
}
#endif
unsigned PeriodicWaveImpl::NumberOfPartialsForRange(
unsigned range_index) const {
// Number of cents below nyquist where we cull partials.
float cents_to_cull = range_index * cents_per_range_;
// A value from 0 -> 1 representing what fraction of the partials to keep.
float culling_scale = pow(2, -cents_to_cull / 1200);
// The very top range will have all the partials culled.
unsigned number_of_partials = culling_scale * MaxNumberOfPartials();
return number_of_partials;
}
// Convert into time-domain wave buffers. One table is created for each range
// for non-aliasing playback at different playback rates. Thus, higher ranges
// have more high-frequency partials culled out.
void PeriodicWaveImpl::CreateBandLimitedTables(const float* real_data,
const float* imag_data,
unsigned number_of_components,
bool disable_normalization) {
// The default scale factor for when normalization is disabled.
float normalization_scale = 0.5;
unsigned fft_size = PeriodicWaveSize();
unsigned half_size = fft_size / 2;
unsigned i;
number_of_components = std::min(number_of_components, half_size);
band_limited_tables_.reserve(NumberOfRanges());
FFTFrame frame(fft_size);
for (unsigned range_index = 0; range_index < NumberOfRanges();
++range_index) {
// This FFTFrame is used to cull partials (represented by frequency bins).
AudioFloatArray& real = frame.RealData();
DCHECK_GE(real.size(), number_of_components);
AudioFloatArray& imag = frame.ImagData();
DCHECK_GE(imag.size(), number_of_components);
// Copy from loaded frequency data and generate the complex conjugate
// because of the way the inverse FFT is defined versus the values in the
// arrays. Need to scale the data by fftSize to remove the scaling that the
// inverse IFFT would do.
float scale = fft_size;
vector_math::Vsmul(
real_data, 1, &scale, real.Data(), 1, number_of_components);
scale = -scale;
vector_math::Vsmul(
imag_data, 1, &scale, imag.Data(), 1, number_of_components);
// Find the starting bin where we should start culling. We need to clear
// out the highest frequencies to band-limit the waveform.
unsigned number_of_partials = NumberOfPartialsForRange(range_index);
// If fewer components were provided than 1/2 FFT size, then clear the
// remaining bins. We also need to cull the aliasing partials for this
// pitch range.
for (i = std::min(number_of_components, number_of_partials + 1);
i < half_size; ++i) {
real[i] = 0;
imag[i] = 0;
}
// Clear packed-nyquist and any DC-offset.
real[0] = 0;
imag[0] = 0;
// Create the band-limited table.
unsigned wave_size = PeriodicWaveSize();
std::unique_ptr<AudioFloatArray> table =
std::make_unique<AudioFloatArray>(wave_size);
external_memory_accounter_.Increase(v8::Isolate::GetCurrent(),
wave_size * sizeof(float));
band_limited_tables_.push_back(std::move(table));
// Apply an inverse FFT to generate the time-domain table data.
float* data = band_limited_tables_[range_index]->Data();
frame.DoInverseFFT(data);
// For the first range (which has the highest power), calculate its peak
// value then compute normalization scale.
if (!disable_normalization) {
if (!range_index) {
float max_value;
vector_math::Vmaxmgv(data, 1, &max_value, fft_size);
if (max_value) {
normalization_scale = 1.0f / max_value;
}
}
}
// Apply normalization scale.
vector_math::Vsmul(data, 1, &normalization_scale, data, 1, fft_size);
}
}
void PeriodicWaveImpl::GenerateBasicWaveform(int shape) {
unsigned fft_size = PeriodicWaveSize();
unsigned half_size = fft_size / 2;
AudioFloatArray real(half_size);
AudioFloatArray imag(half_size);
float* real_p = real.Data();
float* imag_p = imag.Data();
// Clear DC and Nyquist.
real_p[0] = 0;
imag_p[0] = 0;
for (unsigned n = 1; n < half_size; ++n) {
float pi_factor = 2 / (n * kPiFloat);
// All waveforms are odd functions with a positive slope at time 0. Hence
// the coefficients for cos() are always 0.
// Fourier coefficients according to standard definition:
// b = 1/pi*integrate(f(x)*sin(n*x), x, -pi, pi)
// = 2/pi*integrate(f(x)*sin(n*x), x, 0, pi)
// since f(x) is an odd function.
float b; // Coefficient for sin().
// Calculate Fourier coefficients depending on the shape. Note that the
// overall scaling (magnitude) of the waveforms is normalized in
// createBandLimitedTables().
switch (shape) {
case OscillatorHandler::SINE:
// Standard sine wave function.
b = (n == 1) ? 1 : 0;
break;
case OscillatorHandler::SQUARE:
// Square-shaped waveform with the first half its maximum value and the
// second half its minimum value.
//
// See http://mathworld.wolfram.com/FourierSeriesSquareWave.html
//
// b[n] = 2/n/pi*(1-(-1)^n)
// = 4/n/pi for n odd and 0 otherwise.
// = 2*(2/(n*pi)) for n odd
b = (n & 1) ? 2 * pi_factor : 0;
break;
case OscillatorHandler::SAWTOOTH:
// Sawtooth-shaped waveform with the first half ramping from zero to
// maximum and the second half from minimum to zero.
//
// b[n] = -2*(-1)^n/pi/n
// = (2/(n*pi))*(-1)^(n+1)
b = pi_factor * ((n & 1) ? 1 : -1);
break;
case OscillatorHandler::TRIANGLE:
// Triangle-shaped waveform going from 0 at time 0 to 1 at time pi/2 and
// back to 0 at time pi.
//
// See http://mathworld.wolfram.com/FourierSeriesTriangleWave.html
//
// b[n] = 8*sin(pi*k/2)/(pi*k)^2
// = 8/pi^2/n^2*(-1)^((n-1)/2) for n odd and 0 otherwise
// = 2*(2/(n*pi))^2 * (-1)^((n-1)/2)
if (n & 1) {
b = 2 * (pi_factor * pi_factor) * ((((n - 1) >> 1) & 1) ? -1 : 1);
} else {
b = 0;
}
break;
default:
NOTREACHED();
}
real_p[n] = 0;
imag_p[n] = b;
}
CreateBandLimitedTables(real_p, imag_p, half_size, false);
}
} // namespace blink
|