1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
// TODO(crbug.com/390223051): Remove C-library calls to fix the errors.
#pragma allow_unsafe_libc_calls
#endif
#include "third_party/blink/renderer/modules/webaudio/wave_shaper_handler.h"
#include <algorithm>
#include <memory>
#include "base/memory/scoped_refptr.h"
#include "base/synchronization/lock.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/core/typed_arrays/dom_typed_array.h"
#include "third_party/blink/renderer/modules/webaudio/audio_node.h"
#include "third_party/blink/renderer/modules/webaudio/audio_node_input.h"
#include "third_party/blink/renderer/modules/webaudio/audio_node_output.h"
#include "third_party/blink/renderer/modules/webaudio/base_audio_context.h"
#include "third_party/blink/renderer/platform/audio/audio_array.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/down_sampler.h"
#include "third_party/blink/renderer/platform/audio/up_sampler.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/blink/renderer/platform/wtf/threading.h"
#if defined(ARCH_CPU_X86_FAMILY)
#include <xmmintrin.h>
#elif defined(CPU_ARM_NEON)
#include <arm_neon.h>
#endif
namespace blink {
namespace {
constexpr unsigned kDefaultNumberOfOutputChannels = 1;
// Computes value of the WaveShaper
double WaveShaperCurveValue(float input,
const float* curve_data,
int curve_length) {
// Calculate a virtual index based on input -1 -> +1 with -1 being
// curve[0], +1 being curve[curveLength - 1], and 0 being at the center of
// the curve data. Then linearly interpolate between the two points in the
// curve.
const double virtual_index = 0.5 * (input + 1) * (curve_length - 1);
double output;
if (virtual_index < 0) {
// input < -1, so use curve[0]
output = curve_data[0];
} else if (virtual_index >= curve_length - 1) {
// input >= 1, so use last curve value
output = curve_data[curve_length - 1];
} else {
// The general case where -1 <= input < 1, where 0 <= virtualIndex <
// curveLength - 1, so interpolate between the nearest samples on the
// curve.
const unsigned index1 = static_cast<unsigned>(virtual_index);
const unsigned index2 = index1 + 1;
const double interpolation_factor = virtual_index - index1;
const double value1 = curve_data[index1];
const double value2 = curve_data[index2];
output =
(1.0 - interpolation_factor) * value1 + interpolation_factor * value2;
}
return output;
}
} // namespace
class WaveShaperKernel final {
public:
// Oversampling.
std::unique_ptr<AudioFloatArray> temp_buffer_;
std::unique_ptr<AudioFloatArray> temp_buffer2_;
std::unique_ptr<UpSampler> up_sampler_;
std::unique_ptr<DownSampler> down_sampler_;
std::unique_ptr<UpSampler> up_sampler2_;
std::unique_ptr<DownSampler> down_sampler2_;
bool IsInitialized() { return temp_buffer_ != nullptr; }
// Oversampling requires more resources, so let's only allocate them if
// needed.
void LazyInitializeOversampling(unsigned render_quantum_frames) {
if (!IsInitialized()) {
temp_buffer_ =
std::make_unique<AudioFloatArray>(render_quantum_frames * 2);
temp_buffer2_ =
std::make_unique<AudioFloatArray>(render_quantum_frames * 4);
up_sampler_ = std::make_unique<UpSampler>(render_quantum_frames);
down_sampler_ = std::make_unique<DownSampler>(render_quantum_frames * 2);
up_sampler2_ = std::make_unique<UpSampler>(render_quantum_frames * 2);
down_sampler2_ = std::make_unique<DownSampler>(render_quantum_frames * 4);
}
}
};
scoped_refptr<WaveShaperHandler> WaveShaperHandler::Create(AudioNode& node,
float sample_rate) {
return base::AdoptRef(new WaveShaperHandler(node, sample_rate));
}
WaveShaperHandler::~WaveShaperHandler() {
if (IsInitialized()) {
Uninitialize();
}
}
void WaveShaperHandler::SetCurve(const float* curve_data,
unsigned curve_length) {
DCHECK(IsMainThread());
// This synchronizes with process().
base::AutoLock process_locker(process_lock_);
if (curve_length == 0 || !curve_data) {
curve_ = nullptr;
tail_time_ = 0;
return;
}
// Copy the curve data, if any, to our internal buffer.
curve_ = std::make_unique<Vector<float>>(curve_length);
memcpy(curve_->data(), curve_data, sizeof(float) * curve_length);
// Compute the curve output for a zero input, and set the tail time.
const double output = WaveShaperCurveValue(0.0, curve_data, curve_length);
tail_time_ = output == 0 ? 0 : std::numeric_limits<double>::infinity();
}
const Vector<float>* WaveShaperHandler::Curve() const {
DCHECK(IsMainThread());
return curve_.get();
}
void WaveShaperHandler::SetOversample(V8OverSampleType::Enum oversample) {
DCHECK(IsMainThread());
base::AutoLock process_locker(process_lock_);
oversample_ = oversample;
// Lazy initialize resamplers, and reset resamplers that are no longer used
switch (oversample) {
case V8OverSampleType::Enum::kNone:
for (auto& kernel : kernels_) {
if (kernel->IsInitialized()) {
kernel->up_sampler_->Reset();
kernel->down_sampler_->Reset();
kernel->up_sampler2_->Reset();
kernel->down_sampler2_->Reset();
}
}
break;
case V8OverSampleType::Enum::k2X:
for (auto& kernel : kernels_) {
kernel->LazyInitializeOversampling(render_quantum_frames_);
DCHECK(kernel->IsInitialized());
kernel->up_sampler2_->Reset();
kernel->down_sampler2_->Reset();
}
break;
case V8OverSampleType::Enum::k4X: {
for (auto& kernel : kernels_) {
kernel->LazyInitializeOversampling(render_quantum_frames_);
}
break;
}
}
// Calculate and cache `latency_time_`
if (kernels_.empty()) {
latency_time_ = 0;
} else {
switch (oversample) {
case V8OverSampleType::Enum::kNone:
latency_time_ = 0;
break;
case V8OverSampleType::Enum::k2X: {
const size_t latency_frames =
kernels_.front()->up_sampler_->LatencyFrames() +
kernels_.front()->down_sampler_->LatencyFrames();
latency_time_ = static_cast<double>(latency_frames) / sample_rate_;
} break;
case V8OverSampleType::Enum::k4X: {
// Account for first stage upsampling.
const size_t latency_frames =
kernels_.front()->up_sampler_->LatencyFrames() +
kernels_.front()->down_sampler_->LatencyFrames();
// Account for second stage upsampling.
// and divide by 2 to get back down to the regular sample-rate.
const size_t latency_frames2 =
(kernels_.front()->up_sampler2_->LatencyFrames() +
kernels_.front()->down_sampler2_->LatencyFrames()) /
2;
latency_time_ = static_cast<double>(latency_frames + latency_frames2) /
sample_rate_;
} break;
}
}
}
V8OverSampleType::Enum WaveShaperHandler::Oversample() const {
DCHECK(IsMainThread());
return oversample_;
}
WaveShaperHandler::WaveShaperHandler(AudioNode& node, float sample_rate)
: AudioHandler(NodeType::kNodeTypeWaveShaper, node, sample_rate),
sample_rate_(sample_rate),
render_quantum_frames_(
node.context()->GetDeferredTaskHandler().RenderQuantumFrames()),
// 4 times render size to handle 4x oversampling.
virtual_index_(4 * render_quantum_frames_),
index_(4 * render_quantum_frames_),
v1_(4 * render_quantum_frames_),
v2_(4 * render_quantum_frames_),
f_(4 * render_quantum_frames_) {
AddInput();
AddOutput(kDefaultNumberOfOutputChannels);
Initialize();
}
void WaveShaperHandler::Process(uint32_t frames_to_process) {
AudioBus* destination_bus = Output(0).Bus();
if (!IsInitialized()) {
destination_bus->Zero();
} else {
scoped_refptr<AudioBus> source_bus = Input(0).Bus();
// TODO(crbug.com/396149720): if we take "tail time" into account, then we
// can avoid calling process once the tail dies down.
if (!Input(0).IsConnected()) {
source_bus->Zero();
}
DCHECK_EQ(source_bus->NumberOfChannels(),
destination_bus->NumberOfChannels());
// The audio thread can't block on this lock, so we call tryLock() instead.
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
DCHECK_EQ(source_bus->NumberOfChannels(), kernels_.size());
DCHECK_EQ(frames_to_process, render_quantum_frames_);
const float* curve_data = curve_ ? curve_->data() : nullptr;
const int curve_length = curve_ ? curve_->size() : 0;
// For each channel of our input, process using the corresponding
// WaveShaperKernel into the output channel.
for (unsigned i = 0; i < kernels_.size(); ++i) {
if (!curve_data || !curve_length) {
// Act as "straight wire" pass-through if no curve is set.
memcpy(destination_bus->Channel(i)->MutableData(),
source_bus->Channel(i)->Data(),
sizeof(float) * frames_to_process);
} else {
switch (oversample_) {
case V8OverSampleType::Enum::kNone:
WaveShaperCurveValues(destination_bus->Channel(i)->MutableData(),
source_bus->Channel(i)->Data(),
frames_to_process, curve_data,
curve_length);
break;
case V8OverSampleType::Enum::k2X: {
float* temp_p = kernels_[i]->temp_buffer_->Data();
kernels_[i]->up_sampler_->Process(source_bus->Channel(i)->Data(),
temp_p, frames_to_process);
// Process at 2x up-sampled rate.
WaveShaperCurveValues(temp_p, temp_p, frames_to_process * 2,
curve_data, curve_length);
kernels_[i]->down_sampler_->Process(
temp_p, destination_bus->Channel(i)->MutableData(),
frames_to_process * 2);
} break;
case V8OverSampleType::Enum::k4X: {
float* temp_p = kernels_[i]->temp_buffer_->Data();
float* temp_p2 = kernels_[i]->temp_buffer2_->Data();
kernels_[i]->up_sampler_->Process(source_bus->Channel(i)->Data(),
temp_p, frames_to_process);
kernels_[i]->up_sampler2_->Process(temp_p, temp_p2,
frames_to_process * 2);
// Process at 4x up-sampled rate.
WaveShaperCurveValues(temp_p2, temp_p2, frames_to_process * 4,
curve_data, curve_length);
kernels_[i]->down_sampler2_->Process(temp_p2, temp_p,
frames_to_process * 4);
kernels_[i]->down_sampler_->Process(
temp_p, destination_bus->Channel(i)->MutableData(),
frames_to_process * 2);
} break;
}
}
}
} else {
// The tryLock() failed. We must be in the middle of modifying guarded
// values.
destination_bus->Zero();
}
}
}
void WaveShaperHandler::Initialize() {
if (IsInitialized()) {
return;
}
{
base::AutoLock locker(process_lock_);
DCHECK(!kernels_.size());
// Create processing kernels, one per channel.
for (unsigned i = 0; i < Output(0).NumberOfChannels(); ++i) {
kernels_.push_back(std::make_unique<WaveShaperKernel>());
if (oversample_ != V8OverSampleType::Enum::kNone) {
kernels_.back()->LazyInitializeOversampling(render_quantum_frames_);
}
}
}
AudioHandler::Initialize();
}
void WaveShaperHandler::Uninitialize() {
if (!IsInitialized()) {
return;
}
{
base::AutoLock locker(process_lock_);
kernels_.clear();
}
AudioHandler::Uninitialize();
}
void WaveShaperHandler::CheckNumberOfChannelsForInput(AudioNodeInput* input) {
DCHECK(Context()->IsAudioThread());
Context()->AssertGraphOwner();
DCHECK_EQ(input, &Input(0));
unsigned number_of_channels = input->NumberOfChannels();
if (IsInitialized() && number_of_channels != Output(0).NumberOfChannels()) {
// We're already initialized but the channel count has changed.
Uninitialize();
}
if (!IsInitialized()) {
// This will propagate the channel count to any nodes connected further
// down the chain...
Output(0).SetNumberOfChannels(number_of_channels);
// Re-initialize the processor with the new channel count.
Initialize();
}
AudioHandler::CheckNumberOfChannelsForInput(input);
}
bool WaveShaperHandler::RequiresTailProcessing() const {
// Always return true even if the tail time and latency might both be zero.
return true;
}
double WaveShaperHandler::TailTime() const {
DCHECK(!IsMainThread());
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
return tail_time_;
} else {
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
}
double WaveShaperHandler::LatencyTime() const {
DCHECK(!IsMainThread());
base::AutoTryLock try_locker(process_lock_);
if (try_locker.is_acquired()) {
return latency_time_;
} else {
// Since we don't want to block the Audio Device thread, we return a large
// value instead of trying to acquire the lock.
return std::numeric_limits<double>::infinity();
}
}
void WaveShaperHandler::PullInputs(uint32_t frames_to_process) {
// Render directly into output bus for in-place processing
Input(0).Pull(Output(0).Bus(), frames_to_process);
}
// Like WaveShaperCurveValue, but computes the values for a vector of
// inputs.
void WaveShaperHandler::WaveShaperCurveValues(float* destination,
const float* source,
uint32_t frames_to_process,
const float* curve_data,
int curve_length) {
DCHECK_LE(frames_to_process, virtual_index_.size());
// Index into the array computed from the source value.
float* virtual_index = virtual_index_.Data();
// virtual_index[k] =
// ClampTo(0.5 * (source[k] + 1) * (curve_length - 1),
// 0.0f,
// static_cast<float>(curve_length - 1))
// Add 1 to source puttting result in virtual_index
vector_math::Vsadd(source, 1, 1, virtual_index, 1, frames_to_process);
// Scale virtual_index in place by (curve_lenth -1)/2
vector_math::Vsmul(virtual_index, 1, 0.5 * (curve_length - 1), virtual_index,
1, frames_to_process);
// Clip virtual_index, in place.
vector_math::Vclip(virtual_index, 1, 0, curve_length - 1, virtual_index, 1,
frames_to_process);
// index = floor(virtual_index)
DCHECK_LE(frames_to_process, index_.size());
float* index = index_.Data();
// v1 and v2 hold the curve_data corresponding to the closest curve
// values to the source sample. To save memory, v1 will use the
// destination array.
DCHECK_LE(frames_to_process, v1_.size());
DCHECK_LE(frames_to_process, v2_.size());
float* v1 = v1_.Data();
float* v2 = v2_.Data();
// Interpolation factor: virtual_index - index.
DCHECK_LE(frames_to_process, f_.size());
float* f = f_.Data();
int max_index = curve_length - 1;
unsigned k = 0;
#if defined(ARCH_CPU_X86_FAMILY)
{
int loop_limit = frames_to_process / 4;
// one = 1
__m128i one = _mm_set1_epi32(1);
// Do 4 eleemnts at a time
for (int loop = 0; loop < loop_limit; ++loop, k += 4) {
// v = virtual_index[k]
__m128 v = _mm_loadu_ps(virtual_index + k);
// index1 = static_cast<int>(v);
__m128i index1 = _mm_cvttps_epi32(v);
// v = static_cast<float>(index1) and save result to index[k:k+3]
v = _mm_cvtepi32_ps(index1);
_mm_storeu_ps(&index[k], v);
// index2 = index2 + 1;
__m128i index2 = _mm_add_epi32(index1, one);
// Convert index1/index2 to arrays of 32-bit int values that are our
// array indices to use to get the curve data.
int32_t* i1 = reinterpret_cast<int32_t*>(&index1);
int32_t* i2 = reinterpret_cast<int32_t*>(&index2);
// Get the curve_data values and save them in v1 and v2,
// carefully clamping the values. If the input is NaN, index1
// could be 0x8000000.
v1[k] = curve_data[ClampTo(i1[0], 0, max_index)];
v2[k] = curve_data[ClampTo(i2[0], 0, max_index)];
v1[k + 1] = curve_data[ClampTo(i1[1], 0, max_index)];
v2[k + 1] = curve_data[ClampTo(i2[1], 0, max_index)];
v1[k + 2] = curve_data[ClampTo(i1[2], 0, max_index)];
v2[k + 2] = curve_data[ClampTo(i2[2], 0, max_index)];
v1[k + 3] = curve_data[ClampTo(i1[3], 0, max_index)];
v2[k + 3] = curve_data[ClampTo(i2[3], 0, max_index)];
}
}
#elif defined(CPU_ARM_NEON)
{
int loop_limit = frames_to_process / 4;
// Neon constants:
// zero = 0
// one = 1
// max = max_index
int32x4_t zero = vdupq_n_s32(0);
int32x4_t one = vdupq_n_s32(1);
int32x4_t max = vdupq_n_s32(max_index);
for (int loop = 0; loop < loop_limit; ++loop, k += 4) {
// v = virtual_index
float32x4_t v = vld1q_f32(virtual_index + k);
// index1 = static_cast<int32_t>(v), then clamp to a valid index range
// for curve_data
int32x4_t index1 = vcvtq_s32_f32(v);
index1 = vmaxq_s32(vminq_s32(index1, max), zero);
// v = static_cast<float>(v) and save it away for later use.
v = vcvtq_f32_s32(index1);
vst1q_f32(&index[k], v);
// index2 = index1 + 1, then clamp to a valid range for curve_data.
int32x4_t index2 = vaddq_s32(index1, one);
index2 = vmaxq_s32(vminq_s32(index2, max), zero);
// Save index1/2 so we can get the individual parts. Aligned to
// 16 bytes for vst1q instruction.
int32_t i1[4] __attribute__((aligned(16)));
int32_t i2[4] __attribute__((aligned(16)));
vst1q_s32(i1, index1);
vst1q_s32(i2, index2);
// Get curve elements corresponding to the indices.
v1[k] = curve_data[i1[0]];
v2[k] = curve_data[i2[0]];
v1[k + 1] = curve_data[i1[1]];
v2[k + 1] = curve_data[i2[1]];
v1[k + 2] = curve_data[i1[2]];
v2[k + 2] = curve_data[i2[2]];
v1[k + 3] = curve_data[i1[3]];
v2[k + 3] = curve_data[i2[3]];
}
}
#endif
// Compute values for index1 and load the curve_data corresponding to
// indices.
for (; k < frames_to_process; ++k) {
unsigned index1 =
ClampTo(static_cast<unsigned>(virtual_index[k]), 0, max_index);
unsigned index2 = ClampTo(index1 + 1, 0, max_index);
index[k] = index1;
v1[k] = curve_data[index1];
v2[k] = curve_data[index2];
}
// f[k] = virtual_index[k] - index[k]
vector_math::Vsub(virtual_index, 1, index, 1, f, 1, frames_to_process);
// Do the linear interpolation of the curve data:
// destination[k] = v1[k] + f[k]*(v2[k] - v1[k])
//
// 1. v2[k] = v2[k] - v1[k]
// 2. v2[k] = f[k]*v2[k] = f[k]*(v2[k] - v1[k])
// 3. destination[k] = destination[k] + v2[k]
// = v1[k] + f[k]*(v2[k] - v1[k])
vector_math::Vsub(v2, 1, v1, 1, v2, 1, frames_to_process);
vector_math::Vmul(f, 1, v2, 1, v2, 1, frames_to_process);
vector_math::Vadd(v2, 1, v1, 1, destination, 1, frames_to_process);
}
} // namespace blink
|