1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/animation/timing_function.h"
#include <algorithm>
#include "base/notreached.h"
#include "third_party/blink/renderer/platform/wtf/text/strcat.h"
#include "third_party/blink/renderer/platform/wtf/text/string_builder.h"
#include "ui/gfx/animation/keyframe/timing_function.h"
namespace blink {
String LinearTimingFunction::ToString() const {
if (linear_->IsTrivial()) {
return "linear";
}
WTF::StringBuilder builder;
builder.Append("linear(");
for (wtf_size_t i = 0; i < linear_->Points().size(); ++i) {
if (i != 0) {
builder.Append(", ");
}
builder.Append(String::NumberToStringECMAScript(linear_->Point(i).output));
builder.Append(" ");
builder.Append(String::NumberToStringECMAScript(linear_->Point(i).input));
builder.Append("%");
}
builder.Append(")");
return builder.ReleaseString();
}
double LinearTimingFunction::Evaluate(
double fraction,
TimingFunction::LimitDirection limit_direction) const {
return linear_->GetValue(fraction, limit_direction);
}
void LinearTimingFunction::Range(double* min_value, double* max_value) const {
if (IsTrivial()) {
return;
}
//
// (min_it) # * (max_it) ^ *
// | | * | |
// (min_value) @ | | | (max_value) % | |
// * | | * | |
// ________________|_|_|_|____________________|_|_
// @ - min_value.
// % - max_value.
// # - min_it is first of points with same input (and input >= min_value).
// ^ - max_it.
// for min_comp we want the first of points in case of input equality.
// (e.g. begin of range).
const auto min_comp = [](double value, const auto& point) {
return value <= point.input;
};
// for max_comp we want the last of points in case of input equality.
// (e.g. end of range).
const auto max_comp = [](double value, const auto& point) {
return value < point.input;
};
auto min_it = std::upper_bound(Points().cbegin(), Points().cend(),
100 * *min_value, min_comp);
min_it = min_it == Points().cend() ? std::prev(min_it) : min_it;
auto max_it = std::upper_bound(Points().cbegin(), Points().cend(),
100 * *max_value, max_comp);
const auto [min, max] = std::minmax_element(
min_it, max_it,
[](const auto& a, const auto& b) { return a.output < b.output; });
double min_val = Evaluate(*min_value);
double max_val = Evaluate(*max_value);
*min_value = std::min({min_val, max_val, min->output});
*max_value = std::max({min_val, max_val, max->output});
}
std::unique_ptr<gfx::TimingFunction> LinearTimingFunction::CloneToCC() const {
return linear_->Clone();
}
CubicBezierTimingFunction* CubicBezierTimingFunction::Preset(
EaseType ease_type) {
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_in,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_out,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_OUT))));
DEFINE_STATIC_REF(
CubicBezierTimingFunction, ease_in_out,
(base::AdoptRef(new CubicBezierTimingFunction(EaseType::EASE_IN_OUT))));
switch (ease_type) {
case EaseType::EASE:
return ease;
case EaseType::EASE_IN:
return ease_in;
case EaseType::EASE_OUT:
return ease_out;
case EaseType::EASE_IN_OUT:
return ease_in_out;
default:
NOTREACHED();
}
}
String CubicBezierTimingFunction::ToString() const {
switch (GetEaseType()) {
case CubicBezierTimingFunction::EaseType::EASE:
return "ease";
case CubicBezierTimingFunction::EaseType::EASE_IN:
return "ease-in";
case CubicBezierTimingFunction::EaseType::EASE_OUT:
return "ease-out";
case CubicBezierTimingFunction::EaseType::EASE_IN_OUT:
return "ease-in-out";
case CubicBezierTimingFunction::EaseType::CUSTOM:
return WTF::StrCat({"cubic-bezier(",
String::NumberToStringECMAScript(X1()), ", ",
String::NumberToStringECMAScript(Y1()), ", ",
String::NumberToStringECMAScript(X2()), ", ",
String::NumberToStringECMAScript(Y2()), ")"});
default:
NOTREACHED();
}
}
double CubicBezierTimingFunction::Evaluate(
double fraction,
TimingFunction::LimitDirection limit_direction) const {
return bezier_->bezier().Solve(fraction);
}
void CubicBezierTimingFunction::Range(double* min_value,
double* max_value) const {
const double solution1 = bezier_->bezier().range_min();
const double solution2 = bezier_->bezier().range_max();
// Since our input values can be out of the range 0->1 so we must also
// consider the minimum and maximum points.
double solution_min = bezier_->bezier().SolveWithEpsilon(
*min_value, std::numeric_limits<double>::epsilon());
double solution_max = bezier_->bezier().SolveWithEpsilon(
*max_value, std::numeric_limits<double>::epsilon());
*min_value = std::min(std::min(solution_min, solution_max), 0.0);
*max_value = std::max(std::max(solution_min, solution_max), 1.0);
*min_value = std::min(std::min(*min_value, solution1), solution2);
*max_value = std::max(std::max(*max_value, solution1), solution2);
}
std::unique_ptr<gfx::TimingFunction> CubicBezierTimingFunction::CloneToCC()
const {
return bezier_->Clone();
}
String StepsTimingFunction::ToString() const {
const char* position_string = nullptr;
switch (GetStepPosition()) {
case StepPosition::START:
position_string = "start";
break;
case StepPosition::END:
// do not specify step position in output
break;
case StepPosition::JUMP_BOTH:
position_string = "jump-both";
break;
case StepPosition::JUMP_END:
// do not specify step position in output
break;
case StepPosition::JUMP_NONE:
position_string = "jump-none";
break;
case StepPosition::JUMP_START:
position_string = "jump-start";
break;
}
StringBuilder builder;
builder.Append("steps(");
builder.Append(String::NumberToStringECMAScript(NumberOfSteps()));
if (position_string) {
builder.Append(", ");
builder.Append(position_string);
}
builder.Append(')');
return builder.ToString();
}
void StepsTimingFunction::Range(double* min_value, double* max_value) const {
*min_value = 0;
*max_value = 1;
}
double StepsTimingFunction::Evaluate(double fraction,
LimitDirection limit_direction) const {
return steps_->GetValue(fraction, limit_direction);
}
std::unique_ptr<gfx::TimingFunction> StepsTimingFunction::CloneToCC() const {
return steps_->Clone();
}
scoped_refptr<TimingFunction> CreateCompositorTimingFunctionFromCC(
const gfx::TimingFunction* timing_function) {
if (!timing_function)
return LinearTimingFunction::Shared();
switch (timing_function->GetType()) {
case gfx::TimingFunction::Type::CUBIC_BEZIER: {
auto* cubic_timing_function =
static_cast<const gfx::CubicBezierTimingFunction*>(timing_function);
if (cubic_timing_function->ease_type() !=
gfx::CubicBezierTimingFunction::EaseType::CUSTOM)
return CubicBezierTimingFunction::Preset(
cubic_timing_function->ease_type());
const auto& bezier = cubic_timing_function->bezier();
return CubicBezierTimingFunction::Create(bezier.GetX1(), bezier.GetY1(),
bezier.GetX2(), bezier.GetY2());
}
case gfx::TimingFunction::Type::STEPS: {
auto* steps_timing_function =
static_cast<const gfx::StepsTimingFunction*>(timing_function);
return StepsTimingFunction::Create(
steps_timing_function->steps(),
steps_timing_function->step_position());
}
case gfx::TimingFunction::Type::LINEAR: {
auto* linear_timing_function =
static_cast<const gfx::LinearTimingFunction*>(timing_function);
if (linear_timing_function->IsTrivial()) {
return LinearTimingFunction::Shared();
}
return LinearTimingFunction::Create(linear_timing_function->Points());
}
default:
NOTREACHED();
}
}
// Equals operators
bool operator==(const LinearTimingFunction& lhs, const TimingFunction& rhs) {
if (auto* rhs_func = DynamicTo<LinearTimingFunction>(rhs)) {
return lhs == *rhs_func;
}
return false;
}
bool operator==(const CubicBezierTimingFunction& lhs,
const TimingFunction& rhs) {
if (rhs.GetType() != TimingFunction::Type::CUBIC_BEZIER)
return false;
const auto& ctf = To<CubicBezierTimingFunction>(rhs);
if ((lhs.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM) &&
(ctf.GetEaseType() == CubicBezierTimingFunction::EaseType::CUSTOM))
return (lhs.X1() == ctf.X1()) && (lhs.Y1() == ctf.Y1()) &&
(lhs.X2() == ctf.X2()) && (lhs.Y2() == ctf.Y2());
return lhs.GetEaseType() == ctf.GetEaseType();
}
bool operator==(const StepsTimingFunction& lhs, const TimingFunction& rhs) {
if (rhs.GetType() != TimingFunction::Type::STEPS)
return false;
const auto& stf = To<StepsTimingFunction>(rhs);
return (lhs.NumberOfSteps() == stf.NumberOfSteps()) &&
(lhs.GetStepPosition() == stf.GetStepPosition());
}
// The generic operator== *must* come after the
// non-generic operator== otherwise it will end up calling itself.
bool operator==(const TimingFunction& lhs, const TimingFunction& rhs) {
switch (lhs.GetType()) {
case TimingFunction::Type::LINEAR: {
const auto& linear = To<LinearTimingFunction>(lhs);
return (linear == rhs);
}
case TimingFunction::Type::CUBIC_BEZIER: {
const auto& cubic = To<CubicBezierTimingFunction>(lhs);
return (cubic == rhs);
}
case TimingFunction::Type::STEPS: {
const auto& step = To<StepsTimingFunction>(lhs);
return (step == rhs);
}
default:
NOTREACHED();
}
}
// No need to define specific operator!= as they can all come via this function.
bool operator!=(const TimingFunction& lhs, const TimingFunction& rhs) {
return !(lhs == rhs);
}
} // namespace blink
|