1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/audio/audio_destination.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "base/feature_list.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_functions.h"
#include "base/numerics/safe_conversions.h"
#include "base/task/single_thread_task_runner.h"
#include "base/threading/thread_restrictions.h"
#include "base/trace_event/trace_event.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_glitch_info.h"
#include "third_party/blink/public/common/features.h"
#include "third_party/blink/public/platform/modules/webrtc/webrtc_logging.h"
#include "third_party/blink/public/platform/platform.h"
#include "third_party/blink/public/platform/web_audio_latency_hint.h"
#include "third_party/blink/public/platform/web_audio_sink_descriptor.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/instrumentation/tracing/trace_event.h"
#include "third_party/blink/renderer/platform/runtime_enabled_features.h"
#include "third_party/blink/renderer/platform/scheduler/public/post_cross_thread_task.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_copier_base.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_copier_media.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_functional.h"
namespace blink {
namespace {
// This FIFO size of 16,384 was chosen based on the UMA data. It's the nearest
// multiple of 128 to 16,354 sample-frames, which represents 100% of the
// histogram from "WebAudio.AudioDestination.HardwareBufferSize".
// Although a buffer this big is atypical, some Android phones with a Bluetooth
// audio device report a large buffer size. This redundancy allows such device
// to play audio via Web Audio API.
constexpr uint32_t kFIFOSize = 128 * 128;
const char* DeviceStateToString(AudioDestination::DeviceState state) {
switch (state) {
case AudioDestination::kRunning:
return "running";
case AudioDestination::kPaused:
return "paused";
case AudioDestination::kStopped:
return "stopped";
}
}
bool BypassOutputBuffer(const WebAudioLatencyHint& latency_hint) {
if (RuntimeEnabledFeatures::WebAudioBypassOutputBufferingOptOutEnabled()) {
return false;
}
if (!RuntimeEnabledFeatures::WebAudioBypassOutputBufferingEnabled()) {
return false;
}
switch (latency_hint.Category()) {
case WebAudioLatencyHint::kCategoryInteractive:
return features::kWebAudioBypassOutputBufferingInteractive.Get();
case WebAudioLatencyHint::kCategoryBalanced:
return features::kWebAudioBypassOutputBufferingBalanced.Get();
case WebAudioLatencyHint::kCategoryPlayback:
return features::kWebAudioBypassOutputBufferingPlayback.Get();
case WebAudioLatencyHint::kCategoryExact:
return features::kWebAudioBypassOutputBufferingExact.Get();
default:
return false;
}
}
} // namespace
scoped_refptr<AudioDestination> AudioDestination::Create(
AudioIOCallback& callback,
const WebAudioSinkDescriptor& sink_descriptor,
unsigned number_of_output_channels,
const WebAudioLatencyHint& latency_hint,
std::optional<float> context_sample_rate,
unsigned render_quantum_frames) {
TRACE_EVENT0("webaudio", "AudioDestination::Create");
return base::AdoptRef(
new AudioDestination(callback, sink_descriptor, number_of_output_channels,
latency_hint, context_sample_rate,
render_quantum_frames));
}
AudioDestination::~AudioDestination() {
Stop();
}
int AudioDestination::Render(base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const media::AudioGlitchInfo& glitch_info,
media::AudioBus* dest) {
base::TimeTicks start_timestamp = base::TimeTicks::Now();
const uint32_t number_of_frames = dest->frames();
TRACE_EVENT("webaudio", "AudioDestination::Render", "frames",
number_of_frames, "playout_delay (ms)", delay.InMillisecondsF(),
"delay_timestamp (ms)",
(delay_timestamp - base::TimeTicks()).InMillisecondsF());
glitch_info.MaybeAddTraceEvent();
CHECK_EQ(static_cast<size_t>(dest->channels()), number_of_output_channels_);
CHECK_EQ(number_of_frames, callback_buffer_size_);
if (!is_latency_metric_collected_ && delay.is_positive()) {
// With the advanced distribution profile for a Bluetooth device
// (potentially devices with the largest latency), the known latency is
// around 100 ~ 150ms. Using a "linear" histogram where all buckets are
// exactly the same size (2ms).
base::HistogramBase* histogram = base::LinearHistogram::FactoryGet(
"WebAudio.AudioDestination.HardwareOutputLatency", 0, 200, 100,
base::HistogramBase::kUmaTargetedHistogramFlag);
histogram->Add(base::saturated_cast<int32_t>(delay.InMillisecondsF()));
is_latency_metric_collected_ = true;
}
// Note that this method is called by AudioDeviceThread. If FIFO is not ready,
// or the requested render size is greater than FIFO size return here.
// (crbug.com/692423)
if (!fifo_ || fifo_->length() < number_of_frames) {
TRACE_EVENT_INSTANT1(
"webaudio",
"AudioDestination::Render - FIFO not ready or the size is too small",
TRACE_EVENT_SCOPE_THREAD, "fifo length", fifo_ ? fifo_->length() : 0);
return 0;
}
// Associate the destination data array with the output bus.
for (unsigned i = 0; i < number_of_output_channels_; ++i) {
output_bus_->SetChannelMemory(i, dest->channel(i), number_of_frames);
}
if (is_output_buffer_bypassed_) {
// Fill the FIFO if necessary.
const uint32_t frames_available = fifo_->GetFramesAvailable();
const uint32_t frames_to_render = number_of_frames > frames_available
? number_of_frames - frames_available
: 0;
if (worklet_task_runner_) {
// Use the dual-thread rendering if the AudioWorklet is activated.
output_buffer_bypass_wait_event_.Reset();
PostCrossThreadTask(
*worklet_task_runner_, FROM_HERE,
CrossThreadBindOnce(
&AudioDestination::RequestRenderWait, WrapRefCounted(this),
number_of_frames, frames_to_render, delay, delay_timestamp,
glitch_info, /*request_timestamp=*/base::TimeTicks::Now()));
{
TRACE_EVENT0("webaudio", "AudioDestination::Render waiting");
base::ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
// This is `Wait()`ing on the audio render thread for a `Signal()` from
// the `worklet_task_runner_` thread, which will come from
// `RequestRenderWait()`.
//
// `WaitableEvent` should generally not be allowed on the real-time
// audio threads. In particular, no other code executed on the worklet
// task runner thread should be using `WaitableEvent`. Additionally, the
// below should be the only call to `Wait()` in `AudioDestination`.
// Both the `Wait()` and `Signal()` should only be executed when the
// kWebAudioBypassOutputBuffering flag is enabled, for testing output
// latency differences when the output buffer is bypassed.
//
// As long as the above is true, it is not possible to deadlock or have
// both threads waiting on each other. There is, however, no guarantee
// that the task runner will finish within the real-time budget.
output_buffer_bypass_wait_event_.Wait();
}
} else {
// Otherwise use the single-thread rendering.
state_change_underrun_in_bypass_mode_ = !RequestRender(
number_of_frames, frames_to_render, delay, delay_timestamp,
glitch_info, /*request_timestamp=*/base::TimeTicks::Now());
}
const uint32_t frames_after_render = fifo_->GetFramesAvailable();
if (frames_after_render < number_of_frames) {
// This can happen if the device has stopped or is stopping when
// `Render()` is called.
CHECK(state_change_underrun_in_bypass_mode_);
output_bus_->Zero();
fifo_->Pull(output_bus_.get(), frames_after_render);
uma_reporter_.AddRenderDuration(/*duration=*/base::TimeTicks::Now() -
start_timestamp);
return frames_after_render;
} else {
fifo_->Pull(output_bus_.get(), number_of_frames);
uma_reporter_.AddRenderDuration(/*duration=*/base::TimeTicks::Now() -
start_timestamp);
return number_of_frames;
}
} else {
// Fill the FIFO.
if (worklet_task_runner_) {
// Use the dual-thread rendering if the AudioWorklet is activated.
auto result =
fifo_->PullAndUpdateEarmark(output_bus_.get(), number_of_frames);
// The audio that we just pulled from the fifo will be played before the
// audio that we are about to request, so we add that duration to the
// delay of the audio we request. Note that it doesn't matter if there was
// a fifo underrun, the delay will be the same either way.
delay += audio_utilities::FramesToTime(number_of_frames,
web_audio_device_->SampleRate());
media::AudioGlitchInfo combined_glitch_info = glitch_info;
bool has_fifo_underrun_occurred = false;
if (result.frames_provided < number_of_frames) {
media::AudioGlitchInfo underrun{
// FIFO contains audio at the output device sample rate.
.duration = audio_utilities::FramesToTime(
number_of_frames - result.frames_provided,
web_audio_device_->SampleRate()),
.count = 1};
underrun.MaybeAddTraceEvent();
combined_glitch_info += underrun;
has_fifo_underrun_occurred = true;
}
PostCrossThreadTask(
*worklet_task_runner_, FROM_HERE,
CrossThreadBindOnce(IgnoreResult(&AudioDestination::RequestRender),
WrapRefCounted(this), number_of_frames,
result.frames_to_render, delay, delay_timestamp,
combined_glitch_info,
/*request_timestamp=*/base::TimeTicks::Now(),
has_fifo_underrun_occurred));
} else {
// Otherwise use the single-thread rendering.
const size_t frames_to_render =
fifo_->Pull(output_bus_.get(), number_of_frames);
// The audio that we just pulled from the fifo will be played before the
// audio that we are about to request, so we add that duration to the
// delay of the audio we request.
delay += audio_utilities::FramesToTime(number_of_frames,
web_audio_device_->SampleRate());
RequestRender(number_of_frames, frames_to_render, delay, delay_timestamp,
glitch_info, /*request_timestamp=*/base::TimeTicks::Now());
}
uma_reporter_.AddRenderDuration(/*duration=*/base::TimeTicks::Now() -
start_timestamp);
return number_of_frames;
}
}
void AudioDestination::OnRenderError() {
DCHECK(IsMainThread());
callback_->OnRenderError();
}
void AudioDestination::Start() {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::Start");
SendLogMessage(__func__, "");
if (device_state_ != DeviceState::kStopped) {
return;
}
SetDeviceState(DeviceState::kRunning);
web_audio_device_->Start();
}
void AudioDestination::Stop() {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::Stop");
SendLogMessage(__func__, "");
if (device_state_ == DeviceState::kStopped) {
return;
}
web_audio_device_->Stop();
// Resetting `worklet_task_runner_` here is safe because
// AudioDestination::Render() won't be called after WebAudioDevice::Stop()
// call above.
worklet_task_runner_ = nullptr;
SetDeviceState(DeviceState::kStopped);
}
void AudioDestination::Pause() {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::Pause");
SendLogMessage(__func__, "");
if (device_state_ != DeviceState::kRunning) {
return;
}
web_audio_device_->Pause();
SetDeviceState(DeviceState::kPaused);
}
void AudioDestination::Resume() {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::Resume");
SendLogMessage(__func__, "");
if (device_state_ != DeviceState::kPaused) {
return;
}
SetDeviceState(DeviceState::kRunning);
web_audio_device_->Resume();
}
void AudioDestination::SetWorkletTaskRunner(
scoped_refptr<base::SingleThreadTaskRunner> worklet_task_runner) {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::SetWorkletTaskRunner");
if (worklet_task_runner_) {
DCHECK_EQ(worklet_task_runner_, worklet_task_runner);
return;
}
// The dual-thread rendering kicks off, so update the earmark frames
// accordingly.
fifo_->SetEarmarkFrames(callback_buffer_size_);
worklet_task_runner_ = std::move(worklet_task_runner);
uma_reporter_.UpdateMetricNameForDualThreadMode();
}
void AudioDestination::StartWithWorkletTaskRunner(
scoped_refptr<base::SingleThreadTaskRunner> worklet_task_runner) {
DCHECK(IsMainThread());
TRACE_EVENT0("webaudio", "AudioDestination::StartWithWorkletTaskRunner");
SendLogMessage(__func__, "");
if (device_state_ != DeviceState::kStopped) {
return;
}
SetWorkletTaskRunner(worklet_task_runner);
SetDeviceState(DeviceState::kRunning);
web_audio_device_->Start();
}
bool AudioDestination::IsPlaying() {
DCHECK(IsMainThread());
return device_state_ == DeviceState::kRunning;
}
double AudioDestination::SampleRate() const {
return context_sample_rate_;
}
uint32_t AudioDestination::CallbackBufferSize() const {
return callback_buffer_size_;
}
int AudioDestination::FramesPerBuffer() const {
DCHECK(IsMainThread());
return web_audio_device_->FramesPerBuffer();
}
base::TimeDelta AudioDestination::GetPlatformBufferDuration() const {
DCHECK(IsMainThread());
return audio_utilities::FramesToTime(web_audio_device_->FramesPerBuffer(),
web_audio_device_->SampleRate());
}
uint32_t AudioDestination::MaxChannelCount() const {
return web_audio_device_->MaxChannelCount();
}
void AudioDestination::SetDetectSilence(bool detect_silence) {
DCHECK(IsMainThread());
TRACE_EVENT1("webaudio", "AudioDestination::SetDetectSilence",
"detect_silence", detect_silence);
SendLogMessage(__func__,
String::Format("({detect_silence=%d})", detect_silence));
web_audio_device_->SetDetectSilence(detect_silence);
}
AudioDestination::AudioDestination(
AudioIOCallback& callback,
const WebAudioSinkDescriptor& sink_descriptor,
unsigned number_of_output_channels,
const WebAudioLatencyHint& latency_hint,
std::optional<float> context_sample_rate,
unsigned render_quantum_frames)
: web_audio_device_(
Platform::Current()->CreateAudioDevice(sink_descriptor,
number_of_output_channels,
latency_hint,
context_sample_rate,
this)),
callback_buffer_size_(
web_audio_device_ ? web_audio_device_->FramesPerBuffer() : 0),
number_of_output_channels_(number_of_output_channels),
render_quantum_frames_(render_quantum_frames),
context_sample_rate_(
context_sample_rate.has_value()
? context_sample_rate.value()
: (web_audio_device_ ? web_audio_device_->SampleRate() : 0)),
fifo_(std::make_unique<PushPullFIFO>(
number_of_output_channels,
std::max(kFIFOSize, callback_buffer_size_ + render_quantum_frames),
render_quantum_frames)),
output_bus_(AudioBus::Create(number_of_output_channels,
render_quantum_frames,
false)),
render_bus_(
AudioBus::Create(number_of_output_channels, render_quantum_frames)),
callback_(callback),
uma_reporter_(
AudioDestinationUmaReporter(latency_hint,
callback_buffer_size_,
web_audio_device_->SampleRate())),
is_output_buffer_bypassed_(BypassOutputBuffer(latency_hint)) {
CHECK(web_audio_device_);
SendLogMessage(__func__, String::Format("({output_channels=%u})",
number_of_output_channels));
SendLogMessage(__func__,
String::Format("=> (FIFO size=%u bytes)", fifo_->length()));
SendLogMessage(__func__,
String::Format("=> (device callback buffer size=%u frames)",
callback_buffer_size_));
SendLogMessage(__func__, String::Format("=> (device sample rate=%.0f Hz)",
web_audio_device_->SampleRate()));
SendLogMessage(__func__,
String::Format("Output buffer bypass: %s",
is_output_buffer_bypassed_ ? "yes" : "no"));
TRACE_EVENT1("webaudio", "AudioDestination::AudioDestination",
"sink information",
audio_utilities::GetSinkInfoForTracing(
sink_descriptor, latency_hint,
number_of_output_channels, web_audio_device_->SampleRate(),
callback_buffer_size_));
metric_reporter_.Initialize(
callback_buffer_size_, web_audio_device_->SampleRate());
if (!is_output_buffer_bypassed_) {
// Primes the FIFO for the given callback buffer size. This is to prevent
// first FIFO pulls from causing "underflow" errors.
const unsigned priming_render_quanta =
ceil(callback_buffer_size_ / static_cast<float>(render_quantum_frames));
for (unsigned i = 0; i < priming_render_quanta; ++i) {
fifo_->Push(render_bus_.get());
}
}
double scale_factor = 1.0;
if (!base::FeatureList::IsEnabled(
features::kWebAudioRemoveAudioDestinationResampler) &&
context_sample_rate_ != web_audio_device_->SampleRate()) {
scale_factor = context_sample_rate_ / web_audio_device_->SampleRate();
SendLogMessage(__func__,
String::Format("=> (resampling from %0.f Hz to %0.f Hz)",
context_sample_rate.value(),
web_audio_device_->SampleRate()));
resampler_ = std::make_unique<MediaMultiChannelResampler>(
number_of_output_channels, scale_factor, render_quantum_frames,
CrossThreadBindRepeating(&AudioDestination::ProvideResamplerInput,
CrossThreadUnretained(this)));
resampler_bus_ =
media::AudioBus::CreateWrapper(render_bus_->NumberOfChannels());
resampler_bus_->set_frames(render_bus_->length());
for (unsigned int i = 0; i < render_bus_->NumberOfChannels(); ++i) {
// TODO(crbug.com/375449662): Spanify `AudioChannel::MuteableData`.
resampler_bus_->SetChannelData(
i, UNSAFE_TODO(base::span(
render_bus_->Channel(i)->MutableData(),
base::checked_cast<size_t>(render_bus_->length()))));
}
} else {
SendLogMessage(
__func__,
String::Format("=> (no resampling: context sample rate set to %0.f Hz)",
context_sample_rate_));
}
// Record the sizes if we successfully created an output device.
// Histogram for audioHardwareBufferSize
base::UmaHistogramSparse(
"WebAudio.AudioDestination.HardwareBufferSize",
static_cast<int>(Platform::Current()->AudioHardwareBufferSize()));
// Histogram for the actual callback size used. Typically, this is the same
// as audioHardwareBufferSize, but can be adjusted depending on some
// heuristics below.
base::UmaHistogramSparse("WebAudio.AudioDestination.CallbackBufferSize",
callback_buffer_size_);
base::UmaHistogramSparse("WebAudio.AudioContext.HardwareSampleRate",
web_audio_device_->SampleRate());
// Record the selected sample rate and ratio if the sampleRate was given. The
// ratio is recorded as a percentage, rounded to the nearest percent.
if (context_sample_rate.has_value()) {
// The actual supplied `context_sample_rate` is probably a small set
// including 44100, 48000, 22050, and 2400 Hz. Other valid values range
// from 3000 to 384000 Hz, but are not expected to be used much.
base::UmaHistogramSparse("WebAudio.AudioContextOptions.sampleRate",
context_sample_rate.value());
// From the expected values above and the common HW sample rates, we expect
// the most common ratios to be the set 0.5, 44100/48000, and 48000/44100.
// Other values are possible but seem unlikely.
base::UmaHistogramSparse("WebAudio.AudioContextOptions.sampleRateRatio",
static_cast<int32_t>(100.0 * scale_factor + 0.5));
}
}
void AudioDestination::SetDeviceState(DeviceState state) {
DCHECK(IsMainThread());
base::AutoLock locker(device_state_lock_);
device_state_ = state;
}
void AudioDestination::RequestRenderWait(
size_t frames_requested,
size_t frames_to_render,
base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const media::AudioGlitchInfo& glitch_info,
base::TimeTicks request_timestamp) {
state_change_underrun_in_bypass_mode_ =
!RequestRender(frames_requested, frames_to_render, delay, delay_timestamp,
glitch_info, request_timestamp);
output_buffer_bypass_wait_event_.Signal();
}
bool AudioDestination::RequestRender(size_t frames_requested,
size_t frames_to_render,
base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const media::AudioGlitchInfo& glitch_info,
base::TimeTicks request_timestamp,
bool has_fifo_underrun_occurred) {
base::TimeTicks start_timestamp = base::TimeTicks::Now();
uma_reporter_.AddRequestRenderGapDuration(start_timestamp -
request_timestamp);
base::AutoTryLock locker(device_state_lock_);
TRACE_EVENT("webaudio", "AudioDestination::RequestRender", "frames_requested",
frames_requested, "frames_to_render", frames_to_render,
"delay_timestamp (ms)",
(delay_timestamp - base::TimeTicks()).InMillisecondsF(),
"playout_delay (ms)", delay.InMillisecondsF(), "delay (frames)",
fifo_->GetFramesAvailable());
// The state might be changing by ::Stop() call. If the state is locked, do
// not touch the below.
if (!locker.is_acquired()) {
return false;
}
if (device_state_ != DeviceState::kRunning) {
return false;
}
metric_reporter_.BeginTrace();
if (frames_elapsed_ == 0) {
SendLogMessage(__func__, String::Format("=> (rendering is now alive)"));
}
// FIFO contains audio at the output device sample rate.
base::TimeDelta fifo_delay = audio_utilities::FramesToTime(
fifo_->GetFramesAvailable(), web_audio_device_->SampleRate());
uma_reporter_.AddFifoDelay(fifo_delay);
if (has_fifo_underrun_occurred) {
uma_reporter_.IncreaseFifoUnderrunCount();
}
delay_to_report_ = delay + fifo_delay;
glitch_info_to_report_.Add(glitch_info);
output_position_.position =
frames_elapsed_ / static_cast<double>(web_audio_device_->SampleRate()) -
delay.InSecondsF();
output_position_.timestamp =
(delay_timestamp - base::TimeTicks()).InSecondsF();
output_position_.hardware_output_latency = delay.InSecondsF();
const base::TimeTicks callback_request = base::TimeTicks::Now();
for (size_t pushed_frames = 0; pushed_frames < frames_to_render;
pushed_frames += render_quantum_frames_) {
// If platform buffer is more than two times longer than
// `RenderQuantumFrames` we do not want output position to get stuck so we
// promote it using the elapsed time from the moment it was initially
// obtained.
if (callback_buffer_size_ > render_quantum_frames_ * 2) {
const double delta =
(base::TimeTicks::Now() - callback_request).InSecondsF();
output_position_.position += delta;
output_position_.timestamp += delta;
}
// Some implementations give only rough estimation of `delay` so
// we might have negative estimation `output_position_` value.
if (output_position_.position < 0.0) {
output_position_.position = 0.0;
}
// Process WebAudio graph and push the rendered output to FIFO.
if (resampler_) {
resampler_->ResampleInternal(render_quantum_frames_,
resampler_bus_.get());
} else {
// Process WebAudio graph and push the rendered output to FIFO.
PullFromCallback(render_bus_.get(), delay_to_report_);
}
fifo_->Push(render_bus_.get());
}
frames_elapsed_ += frames_requested;
uma_reporter_.Report();
metric_reporter_.EndTrace();
uma_reporter_.AddRequestRenderDuration(/*duration=*/base::TimeTicks::Now() -
start_timestamp);
return true;
}
void AudioDestination::ProvideResamplerInput(int resampler_frame_delay,
AudioBus* dest) {
// Resampler delay is audio frames at the context sample rate, before
// resampling.
TRACE_EVENT("webaudio", "AudioDestination::ProvideResamplerInput",
"delay (frames)", resampler_frame_delay);
auto adjusted_delay = delay_to_report_ + audio_utilities::FramesToTime(
resampler_frame_delay, context_sample_rate_);;
PullFromCallback(dest, adjusted_delay);
}
void AudioDestination::PullFromCallback(AudioBus* destination_bus,
base::TimeDelta delay) {
uma_reporter_.AddTotalPlayoutDelay(delay);
callback_->Render(destination_bus, render_quantum_frames_, output_position_,
metric_reporter_.GetMetric(), delay,
glitch_info_to_report_.GetAndReset());
}
media::OutputDeviceStatus AudioDestination::MaybeCreateSinkAndGetStatus() {
TRACE_EVENT0("webaudio", "AudioDestination::MaybeCreateSinkAndGetStatus");
return web_audio_device_->MaybeCreateSinkAndGetStatus();
}
void AudioDestination::SendLogMessage(const char* const function_name,
const String& message) const {
WebRtcLogMessage(String::Format("[WA]AD::%s %s [state=%s]", function_name,
message.Utf8().c_str(),
DeviceStateToString(device_state_))
.Utf8());
}
} // namespace blink
|