1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
|
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGE.
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/platform/audio/delay.h"
#include <cmath>
#include "base/notreached.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
namespace blink {
namespace {
void CopyToCircularBuffer(float* buffer,
int write_index,
int buffer_length,
const float* source,
uint32_t frames_to_process) {
// The algorithm below depends on this being true because we don't expect to
// have to fill the entire buffer more than once.
DCHECK_GE(static_cast<uint32_t>(buffer_length), frames_to_process);
// Copy `frames_to_process` values from `source` to the circular buffer that
// starts at `buffer` of length `buffer_length`. The copy starts at index
// `write_index` into the buffer.
float* write_pointer = &buffer[write_index];
int remainder = buffer_length - write_index;
// Copy the sames over, carefully handling the case where we need to wrap
// around to the beginning of the buffer.
memcpy(write_pointer, source,
sizeof(*write_pointer) *
std::min(static_cast<int>(frames_to_process), remainder));
memcpy(buffer, source + remainder,
sizeof(*write_pointer) *
std::max(0, static_cast<int>(frames_to_process) - remainder));
}
} // namespace
Delay::Delay(double max_delay_time,
float sample_rate,
unsigned render_quantum_frames)
: max_delay_time_(max_delay_time),
delay_times_(render_quantum_frames),
temp_buffer_(render_quantum_frames),
sample_rate_(sample_rate) {
DCHECK_GT(max_delay_time_, 0.0);
DCHECK(std::isfinite(max_delay_time_));
size_t buffer_length =
BufferLengthForDelay(max_delay_time, sample_rate, render_quantum_frames);
DCHECK(buffer_length);
buffer_.Allocate(buffer_length);
buffer_.Zero();
}
size_t Delay::BufferLengthForDelay(double max_delay_time,
double sample_rate,
unsigned render_quantum_frames) const {
// Compute the length of the buffer needed to handle a max delay of
// `maxDelayTime`. Add an additional render quantum frame size so we can
// vectorize the delay processing. The extra space is needed so that writes
// to the buffer won't overlap reads from the buffer.
return render_quantum_frames +
audio_utilities::TimeToSampleFrame(max_delay_time, sample_rate,
audio_utilities::kRoundUp);
}
double Delay::DelayTime(float sample_rate) {
return desired_delay_frames_ / sample_rate;
}
#if !(defined(ARCH_CPU_X86_FAMILY) || defined(CPU_ARM_NEON))
// Default scalar versions if simd/neon are not available.
std::tuple<unsigned, int> Delay::ProcessARateVector(
float* destination,
uint32_t frames_to_process) const {
// We don't have a vectorized version, so just do nothing and return the 0 to
// indicate no frames processed and return the current write_index_.
return std::make_tuple(0, write_index_);
}
void Delay::HandleNaN(float* delay_times,
uint32_t frames_to_process,
float max_time) {
for (unsigned k = 0; k < frames_to_process; ++k) {
if (std::isnan(delay_times[k])) {
delay_times[k] = max_time;
}
}
}
#endif
int Delay::ProcessARateScalar(unsigned start,
int w_index,
float* destination,
uint32_t frames_to_process) const {
const int buffer_length = buffer_.size();
const float* buffer = buffer_.Data();
DCHECK(buffer_length);
DCHECK(destination);
DCHECK_GE(write_index_, 0);
DCHECK_LT(write_index_, buffer_length);
float sample_rate = sample_rate_;
const float* delay_times = delay_times_.Data();
for (unsigned i = start; i < frames_to_process; ++i) {
double delay_time = std::fmax(delay_times[i], 0);
double desired_delay_frames = delay_time * sample_rate;
double read_position = w_index + buffer_length - desired_delay_frames;
if (read_position >= buffer_length) {
read_position -= buffer_length;
}
// Linearly interpolate in-between delay times.
int read_index1 = static_cast<int>(read_position);
DCHECK_GE(read_index1, 0);
DCHECK_LT(read_index1, buffer_length);
int read_index2 = read_index1 + 1;
if (read_index2 >= buffer_length) {
read_index2 -= buffer_length;
}
DCHECK_GE(read_index2, 0);
DCHECK_LT(read_index2, buffer_length);
float interpolation_factor = read_position - read_index1;
float sample1 = buffer[read_index1];
float sample2 = buffer[read_index2];
++w_index;
if (w_index >= buffer_length) {
w_index -= buffer_length;
}
destination[i] = sample1 + interpolation_factor * (sample2 - sample1);
}
return w_index;
}
void Delay::ProcessARate(const float* source,
float* destination,
uint32_t frames_to_process) {
int buffer_length = buffer_.size();
float* buffer = buffer_.Data();
DCHECK(buffer_length);
DCHECK(source);
DCHECK(destination);
DCHECK_GE(write_index_, 0);
DCHECK_LT(write_index_, buffer_length);
float* delay_times = delay_times_.Data();
// Any NaN's get converted to max time
// TODO(crbug.com/1013345): Don't need this if that bug is fixed
double max_time = MaxDelayTime();
HandleNaN(delay_times, frames_to_process, max_time);
CopyToCircularBuffer(buffer, write_index_, buffer_length, source,
frames_to_process);
unsigned frames_processed;
std::tie(frames_processed, write_index_) =
ProcessARateVector(destination, frames_to_process);
if (frames_processed < frames_to_process) {
write_index_ = ProcessARateScalar(frames_processed, write_index_,
destination, frames_to_process);
}
}
void Delay::ProcessKRate(const float* source,
float* destination,
uint32_t frames_to_process) {
int buffer_length = buffer_.size();
float* buffer = buffer_.Data();
DCHECK(buffer_length);
DCHECK(source);
DCHECK(destination);
DCHECK_GE(write_index_, 0);
DCHECK_LT(write_index_, buffer_length);
float sample_rate = sample_rate_;
double max_time = MaxDelayTime();
// This is basically the same as above, but optimized for the case where the
// delay time is constant for the current render.
double delay_time = DelayTime(sample_rate);
// Make sure the delay time is in a valid range.
delay_time = ClampTo(delay_time, 0.0, max_time);
double desired_delay_frames = delay_time * sample_rate;
int w_index = write_index_;
double read_position = w_index + buffer_length - desired_delay_frames;
if (read_position >= buffer_length) {
read_position -= buffer_length;
}
// Linearly interpolate in-between delay times. `read_index1` and
// `read_index2` are the indices of the frames to be used for
// interpolation.
int read_index1 = static_cast<int>(read_position);
float interpolation_factor = read_position - read_index1;
float* buffer_end = &buffer[buffer_length];
DCHECK_GE(static_cast<unsigned>(buffer_length), frames_to_process);
// sample1 and sample2 hold the current and next samples in the buffer.
// These are used for interoplating the delay value. To reduce memory
// usage and an extra memcpy, sample1 can be the same as destination.
float* sample1 = destination;
// Copy data from the source into the buffer, starting at the write index.
// The buffer is circular, so carefully handle the wrapping of the write
// pointer.
CopyToCircularBuffer(buffer, write_index_, buffer_length, source,
frames_to_process);
w_index += frames_to_process;
if (w_index >= buffer_length) {
w_index -= buffer_length;
}
write_index_ = w_index;
// Now copy out the samples from the buffer, starting at the read pointer,
// carefully handling wrapping of the read pointer.
float* read_pointer = &buffer[read_index1];
uint32_t remainder = static_cast<uint32_t>(buffer_end - read_pointer);
memcpy(sample1, read_pointer,
sizeof(*sample1) * std::min(frames_to_process, remainder));
if (frames_to_process > remainder) {
memcpy(sample1 + remainder, buffer,
sizeof(*sample1) * (frames_to_process - remainder));
}
// If interpolation_factor = 0, we don't need to do any interpolation and
// sample1 contains the desried values. We can skip the following code.
if (interpolation_factor != 0) {
DCHECK_LE(frames_to_process, temp_buffer_.size());
int read_index2 = (read_index1 + 1) % buffer_length;
float* sample2 = temp_buffer_.Data();
read_pointer = &buffer[read_index2];
remainder = static_cast<uint32_t>(buffer_end - read_pointer);
memcpy(sample2, read_pointer,
sizeof(*sample1) * std::min(frames_to_process, remainder));
if (frames_to_process > remainder) {
memcpy(sample2 + remainder, buffer,
sizeof(*sample1) * (frames_to_process - remainder));
}
// Interpolate samples, where f = interpolation_factor
// dest[k] = sample1[k] + f*(sample2[k] - sample1[k]);
// sample2[k] = sample2[k] - sample1[k]
vector_math::Vsub(sample2, 1, sample1, 1, sample2, 1, frames_to_process);
// dest[k] = dest[k] + f*sample2[k]
// = sample1[k] + f*(sample2[k] - sample1[k]);
//
vector_math::Vsma(sample2, 1, interpolation_factor, destination, 1,
frames_to_process);
}
}
void Delay::Reset() {
buffer_.Zero();
}
} // namespace blink
|