File: dynamics_compressor.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (590 lines) | stat: -rw-r--r-- 21,488 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*
 * Copyright (C) 2011 Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1.  Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
 *     its contributors may be used to endorse or promote products derived
 *     from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "third_party/blink/renderer/platform/audio/dynamics_compressor.h"

#include <algorithm>
#include <cmath>

#include "base/logging.h"
#include "base/notreached.h"
#include "third_party/blink/renderer/platform/audio/audio_bus.h"
#include "third_party/blink/renderer/platform/audio/audio_utilities.h"
#include "third_party/blink/renderer/platform/audio/denormal_disabler.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/fdlibm/ieee754.h"

namespace blink {

namespace {

// Metering hits peaks instantly, but releases this fast (in seconds).
constexpr float kMeteringReleaseTimeConstant = 0.325f;

constexpr float kUninitializedValue = -1;

constexpr float kPreDelay = 0.006f;  // seconds

// Release zone values 0 -> 1.
constexpr float kReleaseZone1 = 0.09f;
constexpr float kReleaseZone2 = 0.16f;
constexpr float kReleaseZone3 = 0.42f;
constexpr float kReleaseZone4 = 0.98f;

constexpr float kABase = 0.9999999999999998f * kReleaseZone1 +
                         1.8432219684323923e-16f * kReleaseZone2 -
                         1.9373394351676423e-16f * kReleaseZone3 +
                         8.824516011816245e-18f * kReleaseZone4;
constexpr float kBBase =
    -1.5788320352845888f * kReleaseZone1 + 2.3305837032074286f * kReleaseZone2 -
    0.9141194204840429f * kReleaseZone3 + 0.1623677525612032f * kReleaseZone4;
constexpr float kCBase =
    0.5334142869106424f * kReleaseZone1 - 1.272736789213631f * kReleaseZone2 +
    0.9258856042207512f * kReleaseZone3 - 0.18656310191776226f * kReleaseZone4;
constexpr float kDBase =
    0.08783463138207234f * kReleaseZone1 - 0.1694162967925622f * kReleaseZone2 +
    0.08588057951595272f * kReleaseZone3 - 0.00429891410546283f * kReleaseZone4;
constexpr float kEBase = -0.042416883008123074f * kReleaseZone1 +
                         0.1115693827987602f * kReleaseZone2 -
                         0.09764676325265872f * kReleaseZone3 +
                         0.028494263462021576f * kReleaseZone4;

// Detector release time.
constexpr float kSatReleaseTime = 0.0025f;

// Returns x if x is finite (not NaN or infinite), otherwise returns
// default_value
float EnsureFinite(float x, float default_value) {
  DCHECK(!std::isnan(x));
  DCHECK(!std::isinf(x));
  return std::isfinite(x) ? x : default_value;
}

}  // namespace

DynamicsCompressor::DynamicsCompressor(float sample_rate,
                                       unsigned number_of_channels)
    : number_of_channels_(number_of_channels),
      sample_rate_(sample_rate),
      ratio_(kUninitializedValue),
      slope_(kUninitializedValue),
      linear_threshold_(kUninitializedValue),
      db_threshold_(kUninitializedValue),
      db_knee_(kUninitializedValue),
      knee_threshold_(kUninitializedValue),
      db_knee_threshold_(kUninitializedValue),
      db_yknee_threshold_(kUninitializedValue),
      knee_(kUninitializedValue) {
  SetNumberOfChannels(number_of_channels);
  // Initializes most member variables
  Reset();
  metering_release_k_ =
      static_cast<float>(audio_utilities::DiscreteTimeConstantForSampleRate(
          kMeteringReleaseTimeConstant, sample_rate));
  InitializeParameters();
}

void DynamicsCompressor::Process(const AudioBus* source_bus,
                                 AudioBus* destination_bus,
                                 unsigned frames_to_process) {
  // Though number_of_channels is retrieved from destination_bus, we still name
  // it number_of_channels instead of number_of_destination_channels.  It's
  // because we internally match source_channels's size to destination_bus by
  // channel up/down mix. Thus we need number_of_channels to do the loop work
  // for both source_channels_ and destination_channels_.

  const unsigned number_of_channels = destination_bus->NumberOfChannels();
  const unsigned number_of_source_channels = source_bus->NumberOfChannels();

  DCHECK_EQ(number_of_channels, number_of_channels_);
  DCHECK(number_of_source_channels);

  switch (number_of_channels) {
    case 2:  // stereo
      source_channels_[0] = source_bus->Channel(0)->Data();

      if (number_of_source_channels > 1) {
        source_channels_[1] = source_bus->Channel(1)->Data();
      } else {
        // Simply duplicate mono channel input data to right channel for stereo
        // processing.
        source_channels_[1] = source_channels_[0];
      }

      break;
    default:
      // FIXME : support other number of channels.
      NOTREACHED();
  }

  for (unsigned i = 0; i < number_of_channels; ++i) {
    destination_channels_[i] = destination_bus->Channel(i)->MutableData();
  }

  const float db_threshold = ParameterValue(kParamThreshold);
  const float db_knee = ParameterValue(kParamKnee);
  const float ratio = ParameterValue(kParamRatio);
  const float attack_time = ParameterValue(kParamAttack);
  const float release_time = ParameterValue(kParamRelease);

  // Apply compression to the source signal.
  const float** source_channels = source_channels_.get();
  float** destination_channels = destination_channels_.get();

  DCHECK_EQ(pre_delay_buffers_.size(), number_of_channels);

  const float sample_rate = SampleRate();

  const float k = UpdateStaticCurveParameters(db_threshold, db_knee, ratio);

  // Makeup gain with empirical/perceptual tuning.
  const float linear_post_gain = fdlibm::powf(1 / Saturate(1, k), 0.6f);

  // Attack parameters.
  const float attack_frames = std::max(0.001f, attack_time) * sample_rate;

  // Release parameters.
  const float release_frames = sample_rate * release_time;

  const float sat_release_frames = kSatReleaseTime * sample_rate;

  // Create a smooth function which passes through four points.

  // Polynomial of the form
  // y = a + b*x + c*x^2 + d*x^3 + e*x^4;
  // All of these coefficients were derived for 4th order polynomial curve
  // fitting where the y values match the evenly spaced x values as follows:
  // (y1 : x == 0, y2 : x == 1, y3 : x == 2, y4 : x == 3)
  const float a = release_frames * kABase;
  const float b = release_frames * kBBase;
  const float c = release_frames * kCBase;
  const float d = release_frames * kDBase;
  const float e = release_frames * kEBase;

  // x ranges from 0 -> 3       0    1    2   3
  //                           -15  -10  -5   0db

  // y calculates adaptive release frames depending on the amount of
  // compression.

  SetPreDelayTime(kPreDelay);

  constexpr int kNumberOfDivisionFrames = 32;

  const int number_of_divisions = frames_to_process / kNumberOfDivisionFrames;

  unsigned frame_index = 0;
  for (int i = 0; i < number_of_divisions; ++i) {
    // Calculate desired gain

    detector_average_ = EnsureFinite(detector_average_, 1);

    const float desired_gain = detector_average_;

    // Pre-warp so we get desired_gain after sin() warp below.
    const float scaled_desired_gain =
        fdlibm::asinf(desired_gain) / kPiOverTwoFloat;

    // Deal with envelopes

    // envelope_rate is the rate we slew from current compressor level to the
    // desired level.  The exact rate depends on if we're attacking or
    // releasing and by how much.
    float envelope_rate;

    const bool is_releasing = scaled_desired_gain > compressor_gain_;

    // compression_diff_db is the difference between current compression level
    // and the desired level.
    float db_compression_diff;

    if (scaled_desired_gain == 0) {
      db_compression_diff = is_releasing ? -1 : 1;
    } else {
      db_compression_diff = audio_utilities::LinearToDecibels(
          compressor_gain_ / scaled_desired_gain);
    }

    if (is_releasing) {
      // Release mode - db_compression_diff should be negative dB
      db_max_attack_compression_diff_ = -1;

      db_compression_diff = EnsureFinite(db_compression_diff, -1);

      // Adaptive release - higher compression (lower db_compression_diff)
      // releases faster.

      // Contain within range: -12 -> 0 then scale to go from 0 -> 3
      float x = db_compression_diff;
      x = ClampTo(x, -12.0f, 0.0f);
      x = 0.25f * (x + 12);

      // Compute adaptive release curve using 4th order polynomial.
      // Normal values for the polynomial coefficients would create a
      // monotonically increasing function.
      const float x2 = x * x;
      const float x3 = x2 * x;
      const float x4 = x2 * x2;
      const float calc_release_frames = a + b * x + c * x2 + d * x3 + e * x4;

      constexpr float kDbSpacing = 5;
      const float db_per_frame = kDbSpacing / calc_release_frames;

      envelope_rate = audio_utilities::DecibelsToLinear(db_per_frame);
    } else {
      // Attack mode - db_compression_diff should be positive dB

      db_compression_diff = EnsureFinite(db_compression_diff, 1);

      // As long as we're still in attack mode, use a rate based off
      // the largest db_compression_diff we've encountered so far.
      if (db_max_attack_compression_diff_ == -1 ||
          db_max_attack_compression_diff_ < db_compression_diff) {
        db_max_attack_compression_diff_ = db_compression_diff;
      }

      const float db_eff_atten_diff =
          std::max(0.5f, db_max_attack_compression_diff_);

      const float x = 0.25f / db_eff_atten_diff;
      envelope_rate = 1 - fdlibm::powf(x, 1 / attack_frames);
    }

    // Inner loop - calculate shaped power average - apply compression.
    int pre_delay_read_index = pre_delay_read_index_;
    int pre_delay_write_index = pre_delay_write_index_;
    float detector_average = detector_average_;
    float compressor_gain = compressor_gain_;

    int loop_frames = kNumberOfDivisionFrames;
    while (loop_frames--) {
      float compressor_input = 0;

      // Predelay signal, computing compression amount from un-delayed
      // version.
      for (unsigned j = 0; j < number_of_channels; ++j) {
        float* const delay_buffer = pre_delay_buffers_[j]->Data();
        const float undelayed_source = source_channels[j][frame_index];
        delay_buffer[pre_delay_write_index] = undelayed_source;

        const float abs_undelayed_source =
            undelayed_source > 0 ? undelayed_source : -undelayed_source;
        if (compressor_input < abs_undelayed_source) {
          compressor_input = abs_undelayed_source;
        }
      }

      // Calculate shaped power on undelayed input.

      const float scaled_input = compressor_input;
      const float abs_input = scaled_input > 0 ? scaled_input : -scaled_input;

      // Put through shaping curve.
      // This is linear up to the threshold, then enters a "knee" portion
      // followed by the "ratio" portion.  The transition from the threshold
      // to the knee is smooth (1st derivative matched).  The transition
      // from the knee to the ratio portion is smooth (1st derivative
      // matched).
      const float shaped_input = Saturate(abs_input, k);

      const float attenuation =
          abs_input <= 0.0001f ? 1 : shaped_input / abs_input;

      const float db_attenuation =
          std::max(2.0f, -audio_utilities::LinearToDecibels(attenuation));

      const float db_per_frame = db_attenuation / sat_release_frames;

      const float sat_release_rate =
          audio_utilities::DecibelsToLinear(db_per_frame) - 1;

      const bool is_release = (attenuation > detector_average);
      const float rate = is_release ? sat_release_rate : 1;

      detector_average += (attenuation - detector_average) * rate;
      detector_average = std::min(1.0f, detector_average);

      detector_average = EnsureFinite(detector_average, 1);

      // Exponential approach to desired gain.
      if (envelope_rate < 1) {
        // Attack - reduce gain to desired.
        compressor_gain +=
            (scaled_desired_gain - compressor_gain) * envelope_rate;
      } else {
        // Release - exponentially increase gain to 1.0
        compressor_gain *= envelope_rate;
        compressor_gain = std::min(1.0f, compressor_gain);
      }

      // Warp pre-compression gain to smooth out sharp exponential transition
      // points.
      const float post_warp_compressor_gain = static_cast<float>(
          sin(static_cast<double>(kPiOverTwoFloat * compressor_gain)));

      // Calculate total gain using the linear post-gain.
      const float total_gain = linear_post_gain * post_warp_compressor_gain;

      // Calculate metering.
      const float db_real_gain =
          audio_utilities::LinearToDecibels(post_warp_compressor_gain);
      if (db_real_gain < metering_gain_) {
        metering_gain_ = db_real_gain;
      } else {
        metering_gain_ += (db_real_gain - metering_gain_) * metering_release_k_;
      }

      // Apply final gain.
      for (unsigned j = 0; j < number_of_channels; ++j) {
        const float* const delay_buffer = pre_delay_buffers_[j]->Data();
        destination_channels[j][frame_index] =
            delay_buffer[pre_delay_read_index] * total_gain;
      }

      frame_index++;
      pre_delay_read_index =
          (pre_delay_read_index + 1) & kMaxPreDelayFramesMask;
      pre_delay_write_index =
          (pre_delay_write_index + 1) & kMaxPreDelayFramesMask;
    }

    // Locals back to member variables.
    pre_delay_read_index_ = pre_delay_read_index;
    pre_delay_write_index_ = pre_delay_write_index;
    detector_average_ =
        DenormalDisabler::FlushDenormalFloatToZero(detector_average);
    compressor_gain_ =
        DenormalDisabler::FlushDenormalFloatToZero(compressor_gain);
  }

  // Update the compression amount.
  SetParameterValue(kParamReduction, metering_gain_);
}

void DynamicsCompressor::Reset() {
  detector_average_ = 0;
  compressor_gain_ = 1;
  metering_gain_ = 1;

  // Predelay section.
  for (auto& pre_delay_buffer : pre_delay_buffers_) {
    pre_delay_buffer->Zero();
  }

  pre_delay_read_index_ = 0;
  pre_delay_write_index_ = kDefaultPreDelayFrames;

  db_max_attack_compression_diff_ = -1;  // uninitialized state
}

void DynamicsCompressor::SetNumberOfChannels(unsigned number_of_channels) {
  source_channels_ = std::make_unique<const float*[]>(number_of_channels);
  destination_channels_ = std::make_unique<float*[]>(number_of_channels);

  if (pre_delay_buffers_.size() == number_of_channels) {
    return;
  }

  pre_delay_buffers_.clear();
  for (unsigned i = 0; i < number_of_channels; ++i) {
    pre_delay_buffers_.push_back(
        std::make_unique<AudioFloatArray>(kMaxPreDelayFrames));
  }

  number_of_channels_ = number_of_channels;
}

void DynamicsCompressor::SetParameterValue(unsigned parameter_id, float value) {
  DCHECK_LT(parameter_id, static_cast<unsigned>(kParamLast));
  parameters_[parameter_id] = value;
}

float DynamicsCompressor::ParameterValue(unsigned parameter_id) const {
  DCHECK_LT(parameter_id, static_cast<unsigned>(kParamLast));
  return parameters_[parameter_id];
}

float DynamicsCompressor::SampleRate() const {
  return sample_rate_;
}

float DynamicsCompressor::Nyquist() const {
  return sample_rate_ / 2;
}

double DynamicsCompressor::TailTime() const {
  // The reduction value of the compressor is computed from the gain
  // using an exponential filter with a time constant of
  // |kMeteringReleaseTimeConstant|.  We need to keep he compressor
  // running for some time after the inputs go away so that the
  // reduction value approaches 0.  This is a tradeoff between how
  // long we keep the node alive and how close we approach the final
  // value.  A value of 5 to 10 times the time constant is a
  // reasonable trade-off.
  return 5 * kMeteringReleaseTimeConstant;
}

double DynamicsCompressor::LatencyTime() const {
  return last_pre_delay_frames_ / static_cast<double>(SampleRate());
}

bool DynamicsCompressor::RequiresTailProcessing() const {
  // Always return true even if the tail time and latency might both be zero.
  return true;
}

void DynamicsCompressor::InitializeParameters() {
  // Initializes compressor to default values.
  parameters_[kParamThreshold] = -24;   // dB
  parameters_[kParamKnee] = 30;         // dB
  parameters_[kParamRatio] = 12;        // unit-less
  parameters_[kParamAttack] = 0.003f;   // seconds
  parameters_[kParamRelease] = 0.250f;  // seconds
  parameters_[kParamReduction] = 0;     // dB
}

void DynamicsCompressor::SetPreDelayTime(float pre_delay_time) {
  // Re-configure look-ahead section pre-delay if delay time has changed.
  unsigned pre_delay_frames = pre_delay_time * SampleRate();
  if (pre_delay_frames > kMaxPreDelayFrames - 1) {
    pre_delay_frames = kMaxPreDelayFrames - 1;
  }

  if (last_pre_delay_frames_ != pre_delay_frames) {
    last_pre_delay_frames_ = pre_delay_frames;
    for (auto& pre_delay_buffer : pre_delay_buffers_) {
      pre_delay_buffer->Zero();
    }

    pre_delay_read_index_ = 0;
    pre_delay_write_index_ = pre_delay_frames;
  }
}

// Exponential curve for the knee.
// It is 1st derivative matched at linear_threshold_ and asymptotically
// approaches the value linear_threshold_ + 1 / k.
float DynamicsCompressor::KneeCurve(float x, float k) const {
  // Linear up to threshold.
  if (x < linear_threshold_) {
    return x;
  }

  return linear_threshold_ + (1 - static_cast<float>(exp(static_cast<double>(
                                      -k * (x - linear_threshold_))))) /
                                 k;
}

// Full compression curve with constant ratio after knee.
float DynamicsCompressor::Saturate(float x, float k) const {
  if (x < knee_threshold_) {
    return KneeCurve(x, k);
  }
  // Constant ratio after knee.
  const float db_x = audio_utilities::LinearToDecibels(x);
  const float db_y = db_yknee_threshold_ + slope_ * (db_x - db_knee_threshold_);
  return audio_utilities::DecibelsToLinear(db_y);
}

float DynamicsCompressor::KAtSlope(float desired_slope) const {
  const float db_x = db_threshold_ + db_knee_;
  const float x = audio_utilities::DecibelsToLinear(db_x);
  float x2 = 1;
  float db_x2 = 0;

  if (!(x < linear_threshold_)) {
    x2 = x * 1.001;
    db_x2 = audio_utilities::LinearToDecibels(x2);
  }

  // Approximate k given initial values.
  float min_k = 0.1;
  float max_k = 10000;
  float k = 5;

  float slope = 1;
  for (int i = 0; i < 15; ++i) {
    // A high value for k will more quickly asymptotically approach a slope of
    // 0.

    // Approximate 1st derivative with input and output expressed in dB.
    // This slope is equal to the inverse of the compression "ratio".
    // In other words, a compression ratio of 20 would be a slope of 1/20.
    if (!(x < linear_threshold_)) {
      const float db_y = audio_utilities::LinearToDecibels(KneeCurve(x, k));
      const float db_y2 = audio_utilities::LinearToDecibels(KneeCurve(x2, k));
      slope = (db_y2 - db_y) / (db_x2 - db_x);
    }

    if (slope < desired_slope) {
      // k is too high.
      max_k = k;
    } else {
      // k is too low.
      min_k = k;
    }

    // Re-calculate based on geometric mean.
    k = sqrtf(min_k * max_k);
  }

  return k;
}

float DynamicsCompressor::UpdateStaticCurveParameters(float db_threshold,
                                                      float db_knee,
                                                      float ratio) {
  if (db_threshold != db_threshold_ || db_knee != db_knee_ || ratio != ratio_) {
    // Threshold and knee.
    db_threshold_ = db_threshold;
    linear_threshold_ = audio_utilities::DecibelsToLinear(db_threshold);
    db_knee_ = db_knee;

    // Compute knee parameters.
    ratio_ = ratio;
    slope_ = 1 / ratio_;

    const float k = KAtSlope(1 / ratio_);

    db_knee_threshold_ = db_threshold + db_knee;
    knee_threshold_ = audio_utilities::DecibelsToLinear(db_knee_threshold_);

    db_yknee_threshold_ =
        audio_utilities::LinearToDecibels(KneeCurve(knee_threshold_, k));

    knee_ = k;
  }
  return knee_;
}

}  // namespace blink