1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/platform/audio/hrtf_elevation.h"
#include <math.h>
#include <algorithm>
#include <array>
#include <memory>
#include <utility>
#include "base/memory/ptr_util.h"
#include "base/synchronization/lock.h"
#include "third_party/blink/renderer/platform/audio/audio_bus.h"
#include "third_party/blink/renderer/platform/audio/hrtf_database.h"
#include "third_party/blink/renderer/platform/audio/hrtf_panner.h"
#include "third_party/blink/renderer/platform/wtf/text/string_hash.h"
namespace blink {
namespace {
// Spacing, in degrees, between every azimuth loaded from resource.
constexpr unsigned kAzimuthSpacing = 15;
// Number of azimuths loaded from resource.
constexpr unsigned kNumberOfRawAzimuths = 360 / kAzimuthSpacing;
// Interpolates by this factor to get the total number of azimuths from every
// azimuth loaded from resource.
constexpr unsigned kInterpolationFactor = 8;
// Total number of azimuths after interpolation.
constexpr unsigned kNumberOfTotalAzimuths =
kNumberOfRawAzimuths * kInterpolationFactor;
// Total number of components of an HRTF database.
constexpr size_t kTotalNumberOfResponses = 240;
// Number of frames in an individual impulse response.
constexpr size_t kResponseFrameSize = 256;
// Sample-rate of the spatialization impulse responses as stored in the resource
// file. The impulse responses may be resampled to a different sample-rate
// (depending on the audio hardware) when they are loaded.
constexpr float kResponseSampleRate = 44100;
// This table maps the index into the elevation table with the corresponding
// angle. See https://bugs.webkit.org/show_bug.cgi?id=98294#c9 for the
// elevation angles and their order in the concatenated response.
constexpr int kElevationIndexTableSize = 10;
constexpr std::array<int, kElevationIndexTableSize> kElevationIndexTable = {
0, 15, 30, 45, 60, 75, 90, 315, 330, 345,
};
// The range of elevations for the IRCAM impulse responses varies depending on
// azimuth, but the minimum elevation appears to always be -45.
//
// Here's how it goes:
constexpr auto kMaxElevations = std::to_array<int>({
// Azimuth
//
90, // 0
45, // 15
60, // 30
45, // 45
75, // 60
45, // 75
60, // 90
45, // 105
75, // 120
45, // 135
60, // 150
45, // 165
75, // 180
45, // 195
60, // 210
45, // 225
75, // 240
45, // 255
60, // 270
45, // 285
75, // 300
45, // 315
60, // 330
45, // 345
});
// Lazily load a concatenated HRTF database for given subject and store it in a
// local hash table to ensure quick efficient future retrievals.
scoped_refptr<AudioBus> GetConcatenatedImpulseResponsesForSubject(
int subject_resource_id) {
typedef HashMap<int, scoped_refptr<AudioBus>> AudioBusMap;
DEFINE_THREAD_SAFE_STATIC_LOCAL(AudioBusMap, audio_bus_map, ());
DEFINE_THREAD_SAFE_STATIC_LOCAL(base::Lock, lock, ());
base::AutoLock locker(lock);
scoped_refptr<AudioBus> bus;
AudioBusMap::iterator iterator = audio_bus_map.find(subject_resource_id);
if (iterator == audio_bus_map.end()) {
scoped_refptr<AudioBus> concatenated_impulse_responses(
AudioBus::GetDataResource(subject_resource_id, kResponseSampleRate));
DCHECK(concatenated_impulse_responses);
bus = concatenated_impulse_responses;
audio_bus_map.Set(subject_resource_id, bus);
} else {
bus = iterator->value;
}
size_t response_length = bus->length();
size_t expected_length =
static_cast<size_t>(kTotalNumberOfResponses * kResponseFrameSize);
// Check number of channels and length. For now these are fixed and known.
DCHECK_EQ(response_length, expected_length);
DCHECK_EQ(bus->NumberOfChannels(), 2u);
return bus;
}
} // namespace
bool HRTFElevation::CalculateKernelsForAzimuthElevation(
int azimuth,
int elevation,
float sample_rate,
int subject_resource_id,
std::unique_ptr<HRTFKernel>& kernel_l,
std::unique_ptr<HRTFKernel>& kernel_r) {
// Valid values for azimuth are 0 -> 345 in 15 degree increments.
// Valid values for elevation are -45 -> +90 in 15 degree increments.
DCHECK_GE(azimuth, 0);
DCHECK_LE(azimuth, 345);
DCHECK_EQ((azimuth / 15) * 15, azimuth);
DCHECK_GE(elevation, -45);
DCHECK_LE(elevation, 90);
DCHECK_EQ((elevation / 15) * 15, elevation);
const int positive_elevation = elevation < 0 ? elevation + 360 : elevation;
scoped_refptr<AudioBus> bus(
GetConcatenatedImpulseResponsesForSubject(subject_resource_id));
if (!bus) {
return false;
}
// Just sequentially search the table to find the correct index.
int elevation_index = -1;
for (int k = 0; k < kElevationIndexTableSize; ++k) {
if (kElevationIndexTable[k] == positive_elevation) {
elevation_index = k;
break;
}
}
DCHECK_GE(elevation_index, 0);
DCHECK_LT(elevation_index, kElevationIndexTableSize);
// The concatenated impulse response is a bus containing all
// the elevations per azimuth, for all azimuths by increasing
// order. So for a given azimuth and elevation we need to compute
// the index of the wanted audio frames in the concatenated table.
unsigned index =
((azimuth / kAzimuthSpacing) * HRTFDatabase::NumberOfRawElevations()) +
elevation_index;
DCHECK_LE(index, kTotalNumberOfResponses);
// Extract the individual impulse response from the concatenated
// responses and potentially sample-rate convert it to the desired
// (hardware) sample-rate.
unsigned start_frame = index * kResponseFrameSize;
unsigned stop_frame = start_frame + kResponseFrameSize;
scoped_refptr<AudioBus> pre_sample_rate_converted_response(
AudioBus::CreateBufferFromRange(bus.get(), start_frame, stop_frame));
scoped_refptr<AudioBus> response(AudioBus::CreateBySampleRateConverting(
pre_sample_rate_converted_response.get(), false, sample_rate));
// Note that depending on the fftSize returned by the panner, we may be
// truncating the impulse response we just loaded in, or we might zero-pad it.
const unsigned fft_size = HRTFPanner::FftSizeForSampleRate(sample_rate);
if (2 * response->length() < fft_size) {
// Need to resize the response buffer length so that it fis the fft size.
// Create a new response of the right length and copy over the current
// response.
scoped_refptr<AudioBus> padded_response(
AudioBus::Create(response->NumberOfChannels(), fft_size / 2));
for (unsigned channel = 0; channel < response->NumberOfChannels();
++channel) {
memcpy(padded_response->Channel(channel)->MutableData(),
response->Channel(channel)->Data(),
response->length() * sizeof(float));
}
response = padded_response;
}
DCHECK_GE(2 * response->length(), fft_size);
AudioChannel* left_ear_impulse_response =
response->Channel(AudioBus::kChannelLeft);
AudioChannel* right_ear_impulse_response =
response->Channel(AudioBus::kChannelRight);
kernel_l = std::make_unique<HRTFKernel>(left_ear_impulse_response, fft_size,
sample_rate);
kernel_r = std::make_unique<HRTFKernel>(right_ear_impulse_response, fft_size,
sample_rate);
return true;
}
std::unique_ptr<HRTFElevation> HRTFElevation::CreateForSubject(
int subject_resource_id,
int elevation,
float sample_rate) {
DCHECK_GE(elevation, -45);
DCHECK_LE(elevation, 90);
DCHECK_EQ((elevation / 15) * 15, elevation);
std::unique_ptr<HRTFKernelList> kernel_list_l =
std::make_unique<HRTFKernelList>(kNumberOfTotalAzimuths);
std::unique_ptr<HRTFKernelList> kernel_list_r =
std::make_unique<HRTFKernelList>(kNumberOfTotalAzimuths);
// Load convolution kernels from HRTF files.
int interpolated_index = 0;
for (unsigned raw_index = 0; raw_index < kNumberOfRawAzimuths; ++raw_index) {
// Don't let elevation exceed maximum for this azimuth.
const int max_elevation = kMaxElevations[raw_index];
const int actual_elevation = std::min(elevation, max_elevation);
const bool success = CalculateKernelsForAzimuthElevation(
raw_index * kAzimuthSpacing, actual_elevation, sample_rate,
subject_resource_id, kernel_list_l->at(interpolated_index),
kernel_list_r->at(interpolated_index));
if (!success) {
return nullptr;
}
interpolated_index += kInterpolationFactor;
}
// Now go back and interpolate intermediate azimuth values.
for (unsigned i = 0; i < kNumberOfTotalAzimuths; i += kInterpolationFactor) {
int j = (i + kInterpolationFactor) % kNumberOfTotalAzimuths;
// Create the interpolated convolution kernels and delays.
for (unsigned jj = 1; jj < kInterpolationFactor; ++jj) {
float x =
static_cast<float>(jj) /
static_cast<float>(kInterpolationFactor); // interpolate from 0 -> 1
(*kernel_list_l)[i + jj] = HRTFKernel::CreateInterpolatedKernel(
kernel_list_l->at(i).get(), kernel_list_l->at(j).get(), x);
(*kernel_list_r)[i + jj] = HRTFKernel::CreateInterpolatedKernel(
kernel_list_r->at(i).get(), kernel_list_r->at(j).get(), x);
}
}
std::unique_ptr<HRTFElevation> hrtf_elevation =
base::WrapUnique(new HRTFElevation(std::move(kernel_list_l),
std::move(kernel_list_r), elevation));
return hrtf_elevation;
}
std::unique_ptr<HRTFElevation> HRTFElevation::CreateByInterpolatingSlices(
HRTFElevation* hrtf_elevation1,
HRTFElevation* hrtf_elevation2,
float x) {
DCHECK(hrtf_elevation1);
DCHECK(hrtf_elevation2);
DCHECK_GE(x, 0.0);
DCHECK_LT(x, 1.0);
std::unique_ptr<HRTFKernelList> kernel_list_l =
std::make_unique<HRTFKernelList>(kNumberOfTotalAzimuths);
std::unique_ptr<HRTFKernelList> kernel_list_r =
std::make_unique<HRTFKernelList>(kNumberOfTotalAzimuths);
HRTFKernelList* kernel_list_l1 = hrtf_elevation1->KernelListL();
HRTFKernelList* kernel_list_r1 = hrtf_elevation1->KernelListR();
HRTFKernelList* kernel_list_l2 = hrtf_elevation2->KernelListL();
HRTFKernelList* kernel_list_r2 = hrtf_elevation2->KernelListR();
// Interpolate kernels of corresponding azimuths of the two elevations.
for (unsigned i = 0; i < kNumberOfTotalAzimuths; ++i) {
(*kernel_list_l)[i] = HRTFKernel::CreateInterpolatedKernel(
kernel_list_l1->at(i).get(), kernel_list_l2->at(i).get(), x);
(*kernel_list_r)[i] = HRTFKernel::CreateInterpolatedKernel(
kernel_list_r1->at(i).get(), kernel_list_r2->at(i).get(), x);
}
// Interpolate elevation angle.
const double angle = (1.0 - x) * hrtf_elevation1->elevation_angle_ +
x * hrtf_elevation2->elevation_angle_;
std::unique_ptr<HRTFElevation> hrtf_elevation = base::WrapUnique(
new HRTFElevation(std::move(kernel_list_l), std::move(kernel_list_r),
static_cast<int>(angle)));
return hrtf_elevation;
}
unsigned HRTFElevation::NumberOfAzimuths() {
return kNumberOfTotalAzimuths;
}
void HRTFElevation::GetKernelsFromAzimuth(double azimuth_blend,
unsigned azimuth_index,
HRTFKernel*& kernel_l,
HRTFKernel*& kernel_r,
double& frame_delay_l,
double& frame_delay_r) {
DCHECK_GE(azimuth_blend, 0.0);
DCHECK_LT(azimuth_blend, 1.0);
const unsigned num_kernels = kernel_list_l_->size();
DCHECK_LT(azimuth_index, num_kernels);
// Return the left and right kernels.
kernel_l = kernel_list_l_->at(azimuth_index).get();
kernel_r = kernel_list_r_->at(azimuth_index).get();
frame_delay_l = kernel_list_l_->at(azimuth_index)->FrameDelay();
frame_delay_r = kernel_list_r_->at(azimuth_index)->FrameDelay();
const int azimuth_index2 = (azimuth_index + 1) % num_kernels;
const double frame_delay2l = kernel_list_l_->at(azimuth_index2)->FrameDelay();
const double frame_delay2r = kernel_list_r_->at(azimuth_index2)->FrameDelay();
// Linearly interpolate delays.
frame_delay_l =
(1.0 - azimuth_blend) * frame_delay_l + azimuth_blend * frame_delay2l;
frame_delay_r =
(1.0 - azimuth_blend) * frame_delay_r + azimuth_blend * frame_delay2r;
}
} // namespace blink
|