1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#if defined(WTF_USE_WEBAUDIO_PFFFT)
#include "third_party/blink/renderer/platform/audio/fft_frame.h"
#include "base/synchronization/lock.h"
#include "third_party/blink/renderer/platform/audio/audio_array.h"
#include "third_party/blink/renderer/platform/audio/hrtf_panner.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/pffft/src/pffft.h"
namespace blink {
// Not really clear what the largest size of FFT PFFFT supports, but the docs
// indicate it can go up to at least 1048576 (order 20). Since we're using
// single-floats, accuracy decreases quite a bit at that size. Plus we only
// need 32K (order 15) for WebAudio.
const unsigned kMaxFFTPow2Size = 20;
// PFFFT has a minimum real FFT order of 5 (32-point transforms).
const unsigned kMinFFTPow2Size = 5;
FFTFrame::FFTSetup::FFTSetup(unsigned fft_size) {
DCHECK_LE(fft_size, 1U << kMaxFFTPow2Size);
DCHECK_GE(fft_size, 1U << kMinFFTPow2Size);
// All FFTs we need are FFTs of real signals, and the inverse FFTs produce
// real signals. Hence |PFFFT_REAL|.
setup_ = pffft_new_setup(fft_size, PFFFT_REAL);
DCHECK(setup_);
}
FFTFrame::FFTSetup::~FFTSetup() {
DCHECK(setup_);
pffft_destroy_setup(setup_);
}
HashMap<unsigned, std::unique_ptr<FFTFrame::FFTSetup>>& FFTFrame::FFTSetups() {
// TODO(rtoy): Let this bake for a bit and then remove the assertions after
// we're confident the first call is from the main thread.
static bool first_call = true;
// A HashMap to hold all of the possible FFT setups we need. The setups are
// initialized lazily. The key is the fft size, and the value is the setup
// data.
typedef HashMap<unsigned, std::unique_ptr<FFTSetup>> FFTHashMap_t;
DEFINE_THREAD_SAFE_STATIC_LOCAL(FFTHashMap_t, fft_setups, ());
if (first_call) {
DEFINE_STATIC_LOCAL(base::Lock, setup_lock, ());
// Make sure we construct the fft_setups vector below on the main thread.
// Once constructed, we can access it from any thread.
DCHECK(IsMainThread());
first_call = false;
base::AutoLock locker(setup_lock);
// Initialize the hash map with all the possible keys (FFT sizes), with a
// value of nullptr because we want to initialize the setup data lazily. The
// set of valid FFT sizes for PFFFT are of the form 2^k*3^m*5*n where k >=
// 5, m >= 0, n >= 0. We only go up to a max size of 32768, because we need
// at least an FFT size of 32768 for the convolver node.
// TODO(crbug.com/988121): Sync this with kMaxFFTPow2Size.
const int kMaxConvolverFFTSize = 32768;
for (int n = 1; n <= kMaxConvolverFFTSize; n *= 5) {
for (int m = 1; m <= kMaxConvolverFFTSize / n; m *= 3) {
for (int k = 32; k <= kMaxConvolverFFTSize / (n * m); k *= 2) {
int size = k * m * n;
if (size <= kMaxConvolverFFTSize && !fft_setups.Contains(size)) {
fft_setups.insert(size, nullptr);
}
}
}
}
// There should be 87 entries when we're done.
DCHECK_EQ(fft_setups.size(), 87u);
}
return fft_setups;
}
void FFTFrame::InitializeFFTSetupForSize(wtf_size_t fft_size) {
auto& setup = FFTSetups();
DCHECK(setup.Contains(fft_size));
if (setup.find(fft_size)->value == nullptr) {
DEFINE_STATIC_LOCAL(base::Lock, setup_lock, ());
// Make sure allocation of a new setup only occurs on the main thread so we
// don't have a race condition with multiple threads trying to write to the
// same element of the vector.
DCHECK(IsMainThread());
auto fft_data = std::make_unique<FFTSetup>(fft_size);
base::AutoLock locker(setup_lock);
setup.find(fft_size)->value = std::move(fft_data);
}
}
PFFFT_Setup* FFTFrame::FFTSetupForSize(wtf_size_t fft_size) {
auto& setup = FFTSetups();
DCHECK(setup.Contains(fft_size));
DCHECK(setup.find(fft_size)->value);
return setup.find(fft_size)->value->GetSetup();
}
FFTFrame::FFTFrame(unsigned fft_size)
: fft_size_(fft_size),
log2fft_size_(static_cast<unsigned>(log2(fft_size))),
real_data_(fft_size / 2),
imag_data_(fft_size / 2),
complex_data_(fft_size),
pffft_work_(fft_size) {
// Initialize the PFFFT_Setup object here so that it will be ready when we
// compute FFTs.
InitializeFFTSetupForSize(fft_size);
}
// Creates a blank/empty frame (interpolate() must later be called).
FFTFrame::FFTFrame() : fft_size_(0), log2fft_size_(0) {}
// Copy constructor.
FFTFrame::FFTFrame(const FFTFrame& frame)
: fft_size_(frame.fft_size_),
log2fft_size_(frame.log2fft_size_),
real_data_(frame.fft_size_ / 2),
imag_data_(frame.fft_size_ / 2),
complex_data_(frame.fft_size_),
pffft_work_(frame.fft_size_) {
// Initialize the PFFFT_Setup object here wo that it will be ready when we
// compute FFTs.
InitializeFFTSetupForSize(fft_size_);
// Copy/setup frame data.
unsigned nbytes = sizeof(float) * (fft_size_ / 2);
memcpy(RealData().Data(), frame.RealData().Data(), nbytes);
memcpy(ImagData().Data(), frame.ImagData().Data(), nbytes);
}
unsigned FFTFrame::MinFFTSize() {
return 1u << kMinFFTPow2Size;
}
unsigned FFTFrame::MaxFFTSize() {
return 1u << kMaxFFTPow2Size;
}
void FFTFrame::Initialize(float sample_rate) {
// Initialize the vector now so it's ready for use when we construct
// FFTFrames.
FFTSetups();
// Determine the order of the convolvers used by the HRTF kernel. Allocate
// FFT setups for that size and for half that size. The HRTF kernel uses half
// size for analysis FFTs.
//
// TODO(rtoy): Try to come up with some way so that |Initialize()| doesn't
// need to know about how the HRTF panner uses FFTs.
unsigned hrtf_fft_size =
static_cast<unsigned>(HRTFPanner::FftSizeForSampleRate(sample_rate));
DCHECK_GT(hrtf_fft_size, 1U << kMinFFTPow2Size);
DCHECK_LE(hrtf_fft_size, 1U << kMaxFFTPow2Size);
InitializeFFTSetupForSize(hrtf_fft_size);
InitializeFFTSetupForSize(hrtf_fft_size / 2);
}
void FFTFrame::Cleanup() {
for (auto& setup : FFTSetups()) {
setup.value.reset();
}
}
FFTFrame::~FFTFrame() {
}
void FFTFrame::DoFFT(const float* data) {
DCHECK_EQ(pffft_work_.size(), fft_size_);
PFFFT_Setup* setup = FFTSetupForSize(fft_size_);
DCHECK(setup);
pffft_transform_ordered(setup, data, complex_data_.Data(), pffft_work_.Data(),
PFFFT_FORWARD);
unsigned len = fft_size_ / 2;
// Split FFT data into real and imaginary arrays. PFFFT transform already
// uses the desired format; we just need to split out the real and imaginary
// parts.
const float* c = complex_data_.Data();
float* real = real_data_.Data();
float* imag = imag_data_.Data();
for (unsigned k = 0; k < len; ++k) {
int index = 2 * k;
real[k] = c[index];
imag[k] = c[index + 1];
}
}
void FFTFrame::DoInverseFFT(float* data) {
DCHECK_EQ(complex_data_.size(), fft_size_);
unsigned len = fft_size_ / 2;
// Pack the real and imaginary data into the complex array format. PFFFT
// already uses the desired format; we just need to pack the parts together.
float* fft_data = complex_data_.Data();
const float* real = real_data_.Data();
const float* imag = imag_data_.Data();
for (unsigned k = 0; k < len; ++k) {
int index = 2 * k;
fft_data[index] = real[k];
fft_data[index + 1] = imag[k];
}
PFFFT_Setup* setup = FFTSetupForSize(fft_size_);
DCHECK(setup);
pffft_transform_ordered(setup, fft_data, data, pffft_work_.Data(),
PFFFT_BACKWARD);
// The inverse transform needs to be scaled because PFFFT doesn't.
float scale = 1.0 / fft_size_;
vector_math::Vsmul(data, 1, &scale, data, 1, fft_size_);
}
} // namespace blink
#endif // #if defined(WTF_USE_WEBAUDIO_PFFFT)
|