1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/audio/reverb.h"
#include <math.h>
#include <algorithm>
#include <memory>
#include <utility>
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/audio/audio_bus.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/fdlibm/ieee754.h"
namespace blink {
// Empirical gain calibration tested across many impulse responses to ensure
// perceived volume is same as dry (unprocessed) signal
const float kGainCalibration = -58;
const float kGainCalibrationSampleRate = 44100;
// A minimum power value to when normalizing a silent (or very quiet) impulse
// response
const float kMinPower = 0.000125f;
static float CalculateNormalizationScale(AudioBus* response) {
// Normalize by RMS power
unsigned number_of_channels = response->NumberOfChannels();
uint32_t length = response->length();
float power = 0;
for (unsigned i = 0; i < number_of_channels; ++i) {
float channel_power = 0;
vector_math::Vsvesq(response->Channel(i)->Data(), 1, &channel_power,
length);
power += channel_power;
}
power = sqrt(power / (number_of_channels * length));
// Protect against accidental overload
if (!std::isfinite(power) || power < kMinPower) {
power = kMinPower;
}
float scale = 1 / power;
scale *= fdlibm::powf(
10, kGainCalibration *
0.05f); // calibrate to make perceived volume same as unprocessed
// Scale depends on sample-rate.
if (response->SampleRate()) {
scale *= kGainCalibrationSampleRate / response->SampleRate();
}
// True-stereo compensation
if (response->NumberOfChannels() == 4) {
scale *= 0.5f;
}
return scale;
}
Reverb::Reverb(AudioBus* impulse_response,
unsigned render_slice_size,
unsigned max_fft_size,
bool use_background_threads,
bool normalize) {
float scale = 1;
if (normalize) {
scale = CalculateNormalizationScale(impulse_response);
}
Initialize(impulse_response, render_slice_size, max_fft_size,
use_background_threads, scale);
}
void Reverb::Initialize(AudioBus* impulse_response_buffer,
unsigned render_slice_size,
unsigned max_fft_size,
bool use_background_threads,
float scale) {
impulse_response_length_ = impulse_response_buffer->length();
number_of_response_channels_ = impulse_response_buffer->NumberOfChannels();
// The reverb can handle a mono impulse response and still do stereo
// processing.
unsigned num_convolvers = std::max(number_of_response_channels_, 2u);
convolvers_.reserve(num_convolvers);
int convolver_render_phase = 0;
for (unsigned i = 0; i < num_convolvers; ++i) {
AudioChannel* channel = impulse_response_buffer->Channel(
std::min(i, number_of_response_channels_ - 1));
std::unique_ptr<ReverbConvolver> convolver =
std::make_unique<ReverbConvolver>(channel, render_slice_size,
max_fft_size, convolver_render_phase,
use_background_threads, scale);
convolvers_.push_back(std::move(convolver));
convolver_render_phase += render_slice_size;
}
// For "True" stereo processing we allocate a temporary buffer to avoid
// repeatedly allocating it in the process() method. It can be bad to
// allocate memory in a real-time thread.
if (number_of_response_channels_ == 4) {
temp_buffer_ = AudioBus::Create(2, render_slice_size);
}
}
void Reverb::Process(const AudioBus* source_bus,
AudioBus* destination_bus,
uint32_t frames_to_process) {
// Do a fairly comprehensive sanity check.
// If these conditions are satisfied, all of the source and destination
// pointers will be valid for the various matrixing cases.
DCHECK(source_bus);
DCHECK(destination_bus);
DCHECK_GT(source_bus->NumberOfChannels(), 0u);
DCHECK_GT(destination_bus->NumberOfChannels(), 0u);
DCHECK_LE(frames_to_process, source_bus->length());
DCHECK_LE(frames_to_process, destination_bus->length());
// For now only handle mono or stereo output
if (destination_bus->NumberOfChannels() > 2) {
destination_bus->Zero();
return;
}
AudioChannel* destination_channel_l = destination_bus->Channel(0);
const AudioChannel* source_channel_l = source_bus->Channel(0);
// Handle input -> output matrixing...
size_t num_input_channels = source_bus->NumberOfChannels();
size_t num_output_channels = destination_bus->NumberOfChannels();
size_t number_of_response_channels = number_of_response_channels_;
DCHECK_LE(num_input_channels, 2ul);
DCHECK_LE(num_output_channels, 2ul);
DCHECK(number_of_response_channels == 1 || number_of_response_channels == 2 ||
number_of_response_channels == 4);
// These are the possible combinations of number inputs, response
// channels and outputs channels that need to be supported:
//
// numInputChannels: 1 or 2
// numberOfResponseChannels: 1, 2, or 4
// numOutputChannels: 1 or 2
//
// Not all possible combinations are valid. numOutputChannels is
// one only if both numInputChannels and numberOfResponseChannels are 1.
// Otherwise numOutputChannels MUST be 2.
//
// The valid combinations are
//
// Case in -> resp -> out
// 1 1 -> 1 -> 1
// 2 1 -> 2 -> 2
// 3 1 -> 4 -> 2
// 4 2 -> 1 -> 2
// 5 2 -> 2 -> 2
// 6 2 -> 4 -> 2
if (num_input_channels == 2 &&
(number_of_response_channels == 1 || number_of_response_channels == 2) &&
num_output_channels == 2) {
// Case 4 and 5: 2 -> 2 -> 2 or 2 -> 1 -> 2.
//
// These can be handled in the same way because in the latter
// case, two connvolvers are still created with the second being a
// copy of the first.
const AudioChannel* source_channel_r = source_bus->Channel(1);
AudioChannel* destination_channel_r = destination_bus->Channel(1);
convolvers_[0]->Process(source_channel_l, destination_channel_l,
frames_to_process);
convolvers_[1]->Process(source_channel_r, destination_channel_r,
frames_to_process);
} else if (num_input_channels == 1 && num_output_channels == 2 &&
number_of_response_channels == 2) {
// Case 2: 1 -> 2 -> 2
for (int i = 0; i < 2; ++i) {
AudioChannel* destination_channel = destination_bus->Channel(i);
convolvers_[i]->Process(source_channel_l, destination_channel,
frames_to_process);
}
} else if (num_input_channels == 1 && number_of_response_channels == 1) {
// Case 1: 1 -> 1 -> 1
DCHECK_EQ(num_output_channels, 1ul);
convolvers_[0]->Process(source_channel_l, destination_channel_l,
frames_to_process);
} else if (num_input_channels == 2 && number_of_response_channels == 4 &&
num_output_channels == 2) {
// Case 6: 2 -> 4 -> 2 ("True" stereo)
const AudioChannel* source_channel_r = source_bus->Channel(1);
AudioChannel* destination_channel_r = destination_bus->Channel(1);
AudioChannel* temp_channel_l = temp_buffer_->Channel(0);
AudioChannel* temp_channel_r = temp_buffer_->Channel(1);
// Process left virtual source
convolvers_[0]->Process(source_channel_l, destination_channel_l,
frames_to_process);
convolvers_[1]->Process(source_channel_l, destination_channel_r,
frames_to_process);
// Process right virtual source
convolvers_[2]->Process(source_channel_r, temp_channel_l,
frames_to_process);
convolvers_[3]->Process(source_channel_r, temp_channel_r,
frames_to_process);
destination_bus->SumFrom(*temp_buffer_);
} else if (num_input_channels == 1 && number_of_response_channels == 4 &&
num_output_channels == 2) {
// Case 3: 1 -> 4 -> 2 (Processing mono with "True" stereo impulse
// response) This is an inefficient use of a four-channel impulse
// response, but we should handle the case.
AudioChannel* destination_channel_r = destination_bus->Channel(1);
AudioChannel* temp_channel_l = temp_buffer_->Channel(0);
AudioChannel* temp_channel_r = temp_buffer_->Channel(1);
// Process left virtual source
convolvers_[0]->Process(source_channel_l, destination_channel_l,
frames_to_process);
convolvers_[1]->Process(source_channel_l, destination_channel_r,
frames_to_process);
// Process right virtual source
convolvers_[2]->Process(source_channel_l, temp_channel_l,
frames_to_process);
convolvers_[3]->Process(source_channel_l, temp_channel_r,
frames_to_process);
destination_bus->SumFrom(*temp_buffer_);
} else {
DUMP_WILL_BE_NOTREACHED();
destination_bus->Zero();
}
}
void Reverb::Reset() {
for (auto& convolver : convolvers_) {
convolver->Reset();
}
}
size_t Reverb::LatencyFrames() const {
return !convolvers_.empty() ? convolvers_.front()->LatencyFrames() : 0;
}
} // namespace blink
|