1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/audio/reverb_convolver.h"
#include <memory>
#include <utility>
#include "base/location.h"
#include "third_party/blink/renderer/platform/audio/audio_bus.h"
#include "third_party/blink/renderer/platform/audio/vector_math.h"
#include "third_party/blink/renderer/platform/scheduler/public/post_cross_thread_task.h"
#include "third_party/blink/renderer/platform/wtf/cross_thread_functional.h"
namespace blink {
const int kInputBufferSize = 8 * 16384;
// We only process the leading portion of the impulse response in the real-time
// thread. We don't exceed this length. It turns out then, that the
// background thread has about 278msec of scheduling slop. Empirically, this
// has been found to be a good compromise between giving enough time for
// scheduling slop, while still minimizing the amount of processing done in the
// primary (high-priority) thread. This was found to be a good value on Mac OS
// X, and may work well on other platforms as well, assuming the very rough
// scheduling latencies are similar on these time-scales. Of course, this code
// may need to be tuned for individual platforms if this assumption is found to
// be incorrect.
const size_t kRealtimeFrameLimit = 8192 + 4096; // ~278msec @ 44.1KHz
const unsigned kMinFFTSize = 128;
const unsigned kMaxRealtimeFFTSize = 2048;
ReverbConvolver::ReverbConvolver(AudioChannel* impulse_response,
unsigned render_slice_size,
unsigned max_fft_size,
size_t convolver_render_phase,
bool use_background_threads,
float scale)
: impulse_response_length_(impulse_response->length()),
accumulation_buffer_(impulse_response->length() + render_slice_size),
input_buffer_(kInputBufferSize),
min_fft_size_(
kMinFFTSize), // First stage will have this size - successive
// stages will double in size each time
max_fft_size_(max_fft_size) // until we hit m_maxFFTSize
{
// If we are using background threads then don't exceed this FFT size for the
// stages which run in the real-time thread. This avoids having only one or
// two large stages (size 16384 or so) at the end which take a lot of time
// every several processing slices. This way we amortize the cost over more
// processing slices.
max_realtime_fft_size_ = kMaxRealtimeFFTSize;
const float* response = impulse_response->Data();
uint32_t total_response_length = impulse_response->length();
// The total latency is zero because the direct-convolution is used in the
// leading portion.
size_t reverb_total_latency = 0;
unsigned stage_offset = 0;
int i = 0;
unsigned fft_size = min_fft_size_;
while (stage_offset < total_response_length) {
unsigned stage_size = fft_size / 2;
// For the last stage, it's possible that stageOffset is such that we're
// straddling the end of the impulse response buffer (if we use stageSize),
// so reduce the last stage's length...
if (stage_size + stage_offset > total_response_length) {
stage_size = total_response_length - stage_offset;
}
// This "staggers" the time when each FFT happens so they don't all happen
// at the same time
size_t render_phase = convolver_render_phase + i * render_slice_size;
bool use_direct_convolver = !stage_offset;
std::unique_ptr<ReverbConvolverStage> stage =
std::make_unique<ReverbConvolverStage>(
response, total_response_length, reverb_total_latency, stage_offset,
stage_size, fft_size, render_phase, render_slice_size,
&accumulation_buffer_, scale, use_direct_convolver);
bool is_background_stage = false;
if (use_background_threads && stage_offset > kRealtimeFrameLimit) {
background_stages_.push_back(std::move(stage));
is_background_stage = true;
} else {
stages_.push_back(std::move(stage));
}
stage_offset += stage_size;
++i;
if (!use_direct_convolver) {
// Figure out next FFT size
fft_size *= 2;
}
if (use_background_threads && !is_background_stage &&
fft_size > max_realtime_fft_size_) {
fft_size = max_realtime_fft_size_;
}
if (fft_size > max_fft_size_) {
fft_size = max_fft_size_;
}
}
// Start up background thread
// FIXME: would be better to up the thread priority here. It doesn't need to
// be real-time, but higher than the default...
if (use_background_threads && background_stages_.size() > 0) {
background_thread_ = NonMainThread::CreateThread(
ThreadCreationParams(ThreadType::kReverbConvolutionBackgroundThread));
}
}
ReverbConvolver::~ReverbConvolver() {
// Wait for background thread to stop
background_thread_.reset();
}
void ReverbConvolver::ProcessInBackground() {
// Process all of the stages until their read indices reach the input buffer's
// write index
size_t write_index = input_buffer_.WriteIndex();
// Even though it doesn't seem like every stage needs to maintain its own
// version of readIndex we do this in case we want to run in more than one
// background thread.
// FIXME: do better to detect buffer overrun...
while (background_stages_[0]->InputReadIndex() != write_index) {
// The ReverbConvolverStages need to process in amounts which evenly divide
// half the FFT size
const int kSliceSize = kMinFFTSize / 2;
// Accumulate contributions from each stage
for (auto& background_stage : background_stages_) {
background_stage->ProcessInBackground(this, kSliceSize);
}
}
}
void ReverbConvolver::Process(const AudioChannel* source_channel,
AudioChannel* destination_channel,
uint32_t frames_to_process) {
DCHECK(source_channel);
DCHECK(destination_channel);
DCHECK_GE(source_channel->length(), frames_to_process);
DCHECK_GE(destination_channel->length(), frames_to_process);
const float* source = source_channel->Data();
float* destination = destination_channel->MutableData();
DCHECK(source);
DCHECK(destination);
// Feed input buffer (read by all threads)
input_buffer_.Write(source, frames_to_process);
// Accumulate contributions from each stage
for (auto& stage : stages_) {
stage->Process(source, frames_to_process);
}
// Finally read from accumulation buffer
accumulation_buffer_.ReadAndClear(destination, frames_to_process);
// Now that we've buffered more input, post another task to the background
// thread.
if (background_thread_) {
PostCrossThreadTask(
*background_thread_->GetTaskRunner(), FROM_HERE,
CrossThreadBindOnce(&ReverbConvolver::ProcessInBackground,
CrossThreadUnretained(this)));
}
}
void ReverbConvolver::Reset() {
for (auto& stage : stages_) {
stage->Reset();
}
for (auto& background_stage : background_stages_) {
background_stage->Reset();
}
accumulation_buffer_.Reset();
input_buffer_.Reset();
}
size_t ReverbConvolver::LatencyFrames() const {
return 0;
}
} // namespace blink
|