1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
// Copyright 2025 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/geometry/contoured_rect.h"
#include <numbers>
#include "third_party/blink/renderer/platform/geometry/path.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "ui/gfx/geometry/outsets_f.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_f.h"
namespace blink {
using Corner = ContouredRect::Corner;
using CornerCurvature = ContouredRect::CornerCurvature;
namespace {
float CornerRectIntercept(float y,
const gfx::RectF& corner_rect,
float curvature) {
DCHECK_GT(corner_rect.height(), 0);
// Retain existing logic for rounded curvature, to keep backwards
// compatibility. The general-case version has some floating point rounding
// differences.
if (curvature == CornerCurvature::kRound) {
return corner_rect.width() *
sqrt(1 - (y * y) / (corner_rect.height() * corner_rect.height()));
}
// A concave superellipse is a mirror image of the convex version, rather than
// the direct superellipse.
if (curvature < CornerCurvature::kBevel) {
return corner_rect.width() - CornerRectIntercept(corner_rect.height() - y,
corner_rect,
1 / curvature);
}
return corner_rect.width() *
std::pow(1 - std::pow(y / corner_rect.height(), curvature),
1 / curvature);
}
} // namespace
String ContouredRect::CornerCurvature::ToString() const {
return String::Format("tl:%.2f; tr:%.2f; bl:%.2f; br:%.2f", TopLeft(),
TopRight(), BottomLeft(), BottomRight());
}
String ContouredRect::ToString() const {
String rect_string = rect_.ToString();
if (HasRoundCurvature()) {
return rect_string;
}
return rect_string + " curvature:(" + GetCornerCurvature().ToString() + ")";
}
bool ContouredRect::IntersectsQuad(const gfx::QuadF& quad) const {
return HasRoundCurvature() ? rect_.IntersectsQuad(quad)
: GetPath().Intersects(quad);
}
void ContouredRect::OutsetForMarginOrShadow(const gfx::OutsetsF& outsets) {
// For ordinary rounded rects, we use the existing formula.
if (HasRoundCurvature()) {
rect_.OutsetForMarginOrShadow(outsets);
return;
}
// For anything else, keep the same proportions between the original radii and
// the original rect.
gfx::RectF new_rect = rect_.Rect();
FloatRoundedRect::Radii radii = rect_.GetRadii();
new_rect.Outset(outsets);
CHECK(!rect_.IsEmpty());
float scale_x = new_rect.width() / rect_.Rect().width();
float scale_y = new_rect.height() / rect_.Rect().height();
radii.SetTopLeft(gfx::ScaleSize(radii.TopLeft(), scale_x, scale_y));
radii.SetTopRight(gfx::ScaleSize(radii.TopRight(), scale_x, scale_y));
radii.SetBottomRight(gfx::ScaleSize(radii.BottomRight(), scale_x, scale_y));
radii.SetBottomLeft(gfx::ScaleSize(radii.BottomLeft(), scale_x, scale_y));
rect_.SetRadii(radii);
rect_.SetRect(new_rect);
}
bool ContouredRect::XInterceptsAtY(float y,
float& min_x_intercept,
float& max_x_intercept) const {
if (y < Rect().y() || y > Rect().bottom()) {
return false;
}
if (!IsRounded()) {
min_x_intercept = Rect().x();
max_x_intercept = Rect().right();
return true;
}
const gfx::RectF& top_left_rect = rect_.TopLeftCorner();
const gfx::RectF& bottom_left_rect = rect_.BottomLeftCorner();
if (!top_left_rect.IsEmpty() && y >= top_left_rect.y() &&
y < top_left_rect.bottom()) {
min_x_intercept =
top_left_rect.right() -
CornerRectIntercept(top_left_rect.bottom() - y, top_left_rect,
corner_curvature_.TopLeft());
} else if (!bottom_left_rect.IsEmpty() && y >= bottom_left_rect.y() &&
y <= bottom_left_rect.bottom()) {
min_x_intercept =
bottom_left_rect.right() -
CornerRectIntercept(y - bottom_left_rect.y(), bottom_left_rect,
corner_curvature_.BottomLeft());
} else {
min_x_intercept = rect_.Rect().x();
}
const gfx::RectF& top_right_rect = rect_.TopRightCorner();
const gfx::RectF& bottom_right_rect = rect_.BottomRightCorner();
if (!top_right_rect.IsEmpty() && y >= top_right_rect.y() &&
y <= top_right_rect.bottom()) {
max_x_intercept =
top_right_rect.x() + CornerRectIntercept(top_right_rect.bottom() - y,
top_right_rect,
corner_curvature_.TopRight());
} else if (!bottom_right_rect.IsEmpty() && y >= bottom_right_rect.y() &&
y <= bottom_right_rect.bottom()) {
max_x_intercept =
bottom_right_rect.x() +
CornerRectIntercept(y - bottom_right_rect.y(), bottom_right_rect,
corner_curvature_.BottomRight());
} else {
max_x_intercept = rect_.Rect().right();
}
return true;
}
Path ContouredRect::GetPath() const {
return Path::MakeContouredRect(*this);
}
String ContouredRect::Corner::ToString() const {
return String::Format("Corner {%s|%s|%s|%s} k=%.2f",
Start().ToString().c_str(), Outer().ToString().c_str(),
End().ToString().c_str(), Center().ToString().c_str(),
curvature_);
}
// This method creates a corner from a target (this) and an origin.
// The resulting "aligned" corner has its coordinates and curvature adjusted
// in such a way that it would have consistent thickness along its entire path.
Corner ContouredRect::Corner::AlignedToOrigin(const Corner& origin) const {
if (IsZero() || *this == origin) {
return *this;
}
const float curvature = origin.Curvature();
// The thickness is derived from the difference between the target and the
// origin, in the v1 (start->outer) and v2 (outer->end) directions.
const float thickness_start = (origin.v2().Length() - v2().Length());
const float thickness_end = (origin.v1().Length() - v1().Length());
// The curve should start at a position perpendicular to the curve, with the
// thickness as the distance. We use the hull of the superellipse (x*2 - 1/2,
// y*2 - 1/2), normalize a vector in that direction, and find its
// perpendicular.
const float clamped_half_corner =
Corner::HalfCornerForCurvature(ClampTo<float>(curvature, 0.5, 2));
const gfx::Vector2dF normalized_hull_vector = gfx::NormalizeVector2d(
gfx::ScaleVector2d(
gfx::Vector2dF(clamped_half_corner, 1 - clamped_half_corner), 2) -
gfx::Vector2dF(.5, .5));
const gfx::Vector2dF adjusted_offset{normalized_hull_vector.x(),
-normalized_hull_vector.y()};
// Adjust the corner based on the offset & the thickness.
const gfx::Vector2dF v1_offset =
gfx::ScaleVector2d(gfx::NormalizeVector2d(origin.v1()),
thickness_start * adjusted_offset.y());
const gfx::Vector2dF v2_offset =
gfx::ScaleVector2d(gfx::NormalizeVector2d(origin.v2()),
thickness_start * adjusted_offset.x());
const gfx::Vector2dF v3_offset = gfx::ScaleVector2d(
gfx::NormalizeVector2d(origin.v3()), thickness_end * adjusted_offset.x());
const gfx::Vector2dF v4_offset = gfx::ScaleVector2d(
gfx::NormalizeVector2d(origin.v4()), thickness_end * adjusted_offset.y());
return Corner{{origin.Start() + v1_offset + v2_offset,
origin.Outer() + v2_offset + v3_offset,
origin.End() + v3_offset + v4_offset,
origin.Center() + v4_offset + v1_offset},
curvature};
}
// static
float ContouredRect::Corner::CurvatureForHalfCorner(float half_corner) {
return half_corner >= 1 ? ContouredRect::CornerCurvature::kStraight
: half_corner <= 0 ? ContouredRect::CornerCurvature::kNotch
: std::log(0.5) / std::log(half_corner);
}
} // namespace blink
|