File: layout_unit.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (859 lines) | stat: -rw-r--r-- 29,885 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*
 * Copyright (c) 2012, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *     * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above
 * copyright notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with the
 * distribution.
 *     * Neither the name of Google Inc. nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_LAYOUT_UNIT_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_LAYOUT_UNIT_H_

#include <climits>
#include <iosfwd>
#include <limits>
#include <optional>
#include <type_traits>

#include "base/check_op.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/logging.h"
#include "base/numerics/clamped_math.h"
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/platform_export.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
#include "third_party/blink/renderer/platform/wtf/vector_traits.h"

namespace WTF {
class String;
}  // namespace WTF

namespace blink {

#if DCHECK_IS_ON()
#define REPORT_OVERFLOW(doesOverflow)                                          \
  DLOG_IF(ERROR, !(doesOverflow)) << "LayoutUnit overflow !(" << #doesOverflow \
                                  << ") in " << PRETTY_FUNCTION
#else
#define REPORT_OVERFLOW(doesOverflow) ((void)0)
#endif

//
// `FixedPoint` is a fixed-point math class template, with the number of bits
// for the fractional part as a template parameter.
//
// `LayoutUnit` is an instantiated class of the `FixedPoint`, storing multiples
// of 1/64 of a pixel in an `int32_t` storage.
// See: https://trac.webkit.org/wiki/LayoutUnit
//
// `TextRunLayoutUnit` stores multiples of 1/65536 of a pixel in the same
// storage, so it has less integral part than `LayoutUnit` (16/16 bits vs 26/6
// bits). Suitable for a run of text, but not for the whole layout space.
//
// `InlineLayoutUnit` stores the same precision as `TextRunLayoutUnit` using an
// `int64_t` storage. It can provide the text precision, and represent the whole
// layout space (and more, 48 bits vs 26 bits), but it's double-sized.
//
// Note, non-member functions and operators for `TextRunLayoutUnit` and
// `InlineLayoutUnit` are implemented as needed.
//
template <unsigned fractional_bits, typename Storage>
class PLATFORM_EXPORT FixedPoint {
  DISALLOW_NEW();

 public:
  using StorageType = Storage;
  using UnsignedStorageType = std::make_unsigned<Storage>::type;
  static constexpr unsigned kFractionalBits = fractional_bits;
  static constexpr unsigned kIntegralBits =
      sizeof(Storage) * 8 - kFractionalBits;
  static constexpr int kFixedPointDenominator = 1 << kFractionalBits;
  static constexpr Storage kRawValueMax = std::numeric_limits<Storage>::max();
  static constexpr Storage kRawValueMin = std::numeric_limits<Storage>::min();
  static constexpr Storage kIntMax = kRawValueMax / kFixedPointDenominator;
  static constexpr Storage kIntMin = kRawValueMin / kFixedPointDenominator;

  template <typename T>
  static constexpr Storage ClampRawValue(T raw_value) {
    return base::saturated_cast<Storage>(raw_value);
  }

  constexpr FixedPoint() : value_(0) {}

  // Creates a `FixedPoint` with the specified integer value.
  // If the specified value is smaller than `FixedPoint::Min()`, the new
  // `FixedPoint` is equivalent to `FixedPoint::Min()`.
  // If the specified value is greater than the maximum integer value which
  // `FixedPoint` can represent, the new `FixedPoint` is equivalent to
  // `FixedPoint(FixedPoint::kIntMax)` in 32-bit Arm, or is equivalent to
  // `FixedPoint::Max()` otherwise.
  constexpr explicit FixedPoint(std::signed_integral auto value)
    requires(sizeof(value) <= sizeof(int))
      : value_(0) {
    SaturatedSet(static_cast<int>(value));
  }
  constexpr explicit FixedPoint(std::unsigned_integral auto value)
    requires(sizeof(value) <= sizeof(int))
      : value_(0) {
    SaturatedSet(static_cast<unsigned>(value));
  }
  constexpr explicit FixedPoint(std::integral auto value)
    requires(sizeof(value) > sizeof(int))
      : value_(ClampRawValue(value * kFixedPointDenominator)) {}

  // The specified `value` is truncated to a multiple of `Epsilon()` near 0, and
  // is clamped by `Min()` and `Max()`. A NaN `value` produces `FixedPoint(0)`.
  constexpr explicit FixedPoint(float value)
      : value_(ClampRawValue(value * kFixedPointDenominator)) {}
  constexpr explicit FixedPoint(double value)
      : value_(ClampRawValue(value * kFixedPointDenominator)) {}

  // The specified `value` is rounded up to a multiple of `Epsilon()`, and is
  // clamped by `Min()` and `Max()`. A NaN `value` produces `FixedPoint(0)`.
  static FixedPoint FromFloatCeil(float value) {
    return FromRawValueWithClamp(ceilf(value * kFixedPointDenominator));
  }

  // The specified `value` is truncated to a multiple of `Epsilon()`, and is
  // clamped by `Min()` and `Max()`. A NaN `value` produces `FixedPoint(0)`.
  static FixedPoint FromFloatFloor(float value) {
    return FromRawValueWithClamp(floorf(value * kFixedPointDenominator));
  }

  // The specified `value` is rounded to a multiple of `Epsilon()`, and is
  // clamped by `Min()` and `Max()`. A NaN `value` produces `FixedPoint(0)`.
  static FixedPoint FromFloatRound(float value) {
    return FromRawValueWithClamp(roundf(value * kFixedPointDenominator));
  }

  static FixedPoint FromDoubleRound(double value) {
    return FromRawValueWithClamp(round(value * kFixedPointDenominator));
  }

  static constexpr FixedPoint FromRawValue(Storage raw_value) {
    FixedPoint v;
    v.value_ = raw_value;
    return v;
  }
  template <typename T>
  static constexpr FixedPoint FromRawValueWithClamp(T raw_value) {
    return FromRawValue(ClampRawValue(raw_value));
  }

  // Construct from a `FixedPoint` with different template parameters. Implicit
  // because it's lossless. For lossy conversions, use `To<>()` below instead.
  template <unsigned source_fractional_bits, typename SourceStorage>
    requires(
        sizeof(Storage) > sizeof(SourceStorage) &&
        kFractionalBits >= source_fractional_bits &&
        kIntegralBits >=
            FixedPoint<source_fractional_bits, SourceStorage>::kIntegralBits)
  FixedPoint(FixedPoint<source_fractional_bits, SourceStorage> source)
      : value_(static_cast<Storage>(source.RawValue())
               << (kFractionalBits - source_fractional_bits)) {}

  // Convert from a fixed point integer.
  template <unsigned source_fractional_bits>
    requires(source_fractional_bits == kFractionalBits)
  static constexpr FixedPoint FromFixed(Storage value) {
    return FromRawValue(value);
  }
  template <unsigned source_fractional_bits>
    requires(source_fractional_bits >= kFractionalBits)
  static constexpr FixedPoint FromFixed(std::integral auto value) {
    constexpr unsigned kBitsDiff = source_fractional_bits - kFractionalBits;
    return FromRawValueWithClamp(value >> kBitsDiff);
  }
  template <unsigned source_fractional_bits>
    requires(kFractionalBits > source_fractional_bits)
  static constexpr FixedPoint FromFixed(std::integral auto value) {
    constexpr unsigned kBitsDiff = kFractionalBits - source_fractional_bits;
    if (value >= kRawValueMax >> kBitsDiff) [[unlikely]] {
      return Max();
    }
    if (value <= kRawValueMin >> kBitsDiff) [[unlikely]] {
      return Min();
    }
    return FromRawValue(value << kBitsDiff);
  }

  // Convert to a `FixedPoint` with a different storage and/or precision.
  template <typename Target>
  constexpr Target To() const {
    return Target::template FromFixed<kFractionalBits>(RawValue());
  }

  // Convert to a different `FixedPoint` by ceiling the lost precisions (e.g.,
  // `InlineLayoutUnit` to `LayoutUnit`).
  template <typename Target>
    requires(Target::kFractionalBits < kFractionalBits &&
             sizeof(typename Target::StorageType) < sizeof(Storage))
  constexpr Target ToCeil() const {
    constexpr unsigned kBitsDiff = kFractionalBits - Target::kFractionalBits;
    Storage raw_value = RawValue() >> kBitsDiff;
    if (RawValue() & ((1 << kBitsDiff) - 1)) {
      ++raw_value;
    }
    return Target::FromRawValueWithClamp(raw_value);
  }

  constexpr Storage ToInt() const { return value_ / kFixedPointDenominator; }
  constexpr float ToFloat() const {
    return static_cast<float>(value_) / kFixedPointDenominator;
  }
  constexpr double ToDouble() const {
    return static_cast<double>(value_) / kFixedPointDenominator;
  }
  UnsignedStorageType ToUnsigned() const {
    REPORT_OVERFLOW(value_ >= 0);
    return ToInt();
  }

  // Conversion to int or unsigned is lossy. 'explicit' on these operators won't
  // work because there are also other implicit conversion paths (e.g. operator
  // bool then to int which would generate wrong result). Use toInt() and
  // toUnsigned() instead.
  operator int() const = delete;
  operator unsigned() const = delete;

  constexpr operator double() const { return ToDouble(); }
  constexpr operator float() const { return ToFloat(); }
  constexpr operator bool() const { return value_; }

  std::strong_ordering operator<=>(const FixedPoint&) const = default;
  std::partial_ordering operator<=>(double d) const { return ToDouble() <=> d; }
  std::partial_ordering operator<=>(float f) const { return ToFloat() <=> f; }

  FixedPoint operator++(int) {
    value_ = base::ClampAdd(value_, kFixedPointDenominator);
    return *this;
  }

  constexpr Storage RawValue() const { return value_; }
  inline void SetRawValue(int value) { value_ = value; }
  void SetRawValue(int64_t value) {
    if constexpr (sizeof(Storage) < sizeof(int64_t)) {
      REPORT_OVERFLOW(value > kRawValueMin && value < kRawValueMax);
    }
    value_ = static_cast<Storage>(value);
  }

  FixedPoint Abs() const { return FromRawValue(::abs(value_)); }
  Storage Ceil() const {
    if (value_ >= kRawValueMax - kFixedPointDenominator + 1) [[unlikely]] {
      return kIntMax;
    }

    if (value_ >= 0)
      return (value_ + kFixedPointDenominator - 1) / kFixedPointDenominator;
    return ToInt();
  }
  ALWAYS_INLINE Storage Round() const {
    return ToInt() + ((Fraction().RawValue() + (kFixedPointDenominator / 2)) >>
                      kFractionalBits);
  }

  Storage Floor() const {
    if (value_ <= kRawValueMin + kFixedPointDenominator - 1) [[unlikely]] {
      return kIntMin;
    }

    return value_ >> kFractionalBits;
  }

  FixedPoint ClampNegativeToZero() const {
    return value_ < 0 ? FixedPoint() : *this;
  }

  FixedPoint ClampPositiveToZero() const {
    return value_ > 0 ? FixedPoint() : *this;
  }

  FixedPoint ClampIndefiniteToZero() const {
    // We compare to |kFixedPointDenominator| here instead of |kIndefiniteSize|
    // as the operator== for LayoutUnit is inlined below.
    if (value_ == -kFixedPointDenominator)
      return FixedPoint();
    DCHECK_GE(value_, 0);
    return *this;
  }

  constexpr bool HasFraction() const {
    return RawValue() % kFixedPointDenominator;
  }
  constexpr bool IsInteger() const { return !HasFraction(); }

  FixedPoint Fraction() const {
    // Compute fraction using the mod operator to preserve the sign of the value
    // as it may affect rounding.
    return FromRawValue(RawValue() % kFixedPointDenominator);
  }

  bool MightBeSaturated() const {
    return RawValue() == kRawValueMax || RawValue() == kRawValueMin;
  }

  static constexpr float Epsilon() { return 1.0f / kFixedPointDenominator; }

  FixedPoint AddEpsilon() const {
    return FromRawValue(value_ < kRawValueMax ? value_ + 1 : value_);
  }

  static constexpr FixedPoint Max() { return FromRawValue(kRawValueMax); }
  static constexpr FixedPoint Min() { return FromRawValue(kRawValueMin); }

  // Versions of max/min that are slightly smaller/larger than max/min() to
  // allow for rounding without overflowing.
  static constexpr FixedPoint NearlyMax() {
    return FromRawValue(kRawValueMax - kFixedPointDenominator / 2);
  }
  static constexpr FixedPoint NearlyMin() {
    return FromRawValue(kRawValueMin + kFixedPointDenominator / 2);
  }

  static FixedPoint Clamp(double value) { return FromFloatFloor(value); }

  // Multiply by |m| and divide by |d| as a single ("fused") operation, avoiding
  // any saturation of the intermediate result. Rounding matches that of the
  // regular operations (i.e the result of the divide is rounded towards zero).
  FixedPoint MulDiv(FixedPoint m, FixedPoint d) const;

  // Return `std::nullopt` if `this` is the specified value.
  std::optional<FixedPoint> NullOptIf(FixedPoint null_value) const;
  std::optional<FixedPoint> NullOptIfMin() const { return NullOptIf(Min()); }

  WTF::String ToString() const;

 private:
#if defined(ARCH_CPU_ARM_FAMILY) && defined(ARCH_CPU_32_BITS) && \
    defined(COMPILER_GCC) && !BUILDFLAG(IS_NACL) && __OPTIMIZE__
  // If we're building ARM 32-bit on GCC we replace the C++ versions with some
  // native ARM assembly for speed.
  constexpr inline void SaturatedSet(int value) {
    if (std::is_constant_evaluated() || sizeof(Storage) > sizeof(int)) {
      SaturatedSetNonAsm(value);
    } else {
      SaturatedSetAsm(value);
    }
  }

  inline void SaturatedSetAsm(int value) {
    // Figure out how many bits are left for storing the integer part of
    // the fixed point number, and saturate our input to that
    enum { Saturate = 32 - kFractionalBits };

    int result;

    // The following ARM code will Saturate the passed value to the number of
    // bits used for the whole part of the fixed point representation, then
    // shift it up into place. This will result in the low
    // <kFractionalBits> bits all being 0's. When the value saturates
    // this gives a different result to from the C++ case; in the C++ code a
    // saturated value has all the low bits set to 1 (for a +ve number at
    // least). This cannot be done rapidly in ARM ... we live with the
    // difference, for the sake of speed.

    asm("ssat %[output],%[saturate],%[value]\n\t"
        "lsl  %[output],%[shift]"
        : [output] "=r"(result)
        : [value] "r"(value), [saturate] "n"(Saturate),
          [shift] "n"(kFractionalBits));

    value_ = result;
  }

  constexpr inline void SaturatedSet(unsigned value) {
    if (std::is_constant_evaluated() || sizeof(Storage) > sizeof(int)) {
      SaturatedSetNonAsm(value);
    } else {
      SaturatedSetAsm(value);
    }
  }

  inline void SaturatedSetAsm(unsigned value) {
    // Here we are being passed an unsigned value to saturate,
    // even though the result is returned as a signed integer. The ARM
    // instruction for unsigned saturation therefore needs to be given one
    // less bit (i.e. the sign bit) for the saturation to work correctly; hence
    // the '31' below.
    enum { Saturate = 31 - kFractionalBits };

    // The following ARM code will Saturate the passed value to the number of
    // bits used for the whole part of the fixed point representation, then
    // shift it up into place. This will result in the low
    // <kFractionalBits> bits all being 0's. When the value saturates
    // this gives a different result to from the C++ case; in the C++ code a
    // saturated value has all the low bits set to 1. This cannot be done
    // rapidly in ARM, so we live with the difference, for the sake of speed.

    int result;

    asm("usat %[output],%[saturate],%[value]\n\t"
        "lsl  %[output],%[shift]"
        : [output] "=r"(result)
        : [value] "r"(value), [saturate] "n"(Saturate),
          [shift] "n"(kFractionalBits));

    value_ = result;
  }
#else  // end of 32-bit ARM GCC
  ALWAYS_INLINE constexpr void SaturatedSet(int value) {
    SaturatedSetNonAsm(value);
  }

  ALWAYS_INLINE constexpr void SaturatedSet(unsigned value) {
    SaturatedSetNonAsm(value);
  }
#endif

  ALWAYS_INLINE constexpr void SaturatedSetNonAsm(int value) {
    if (value > kIntMax) {
      value_ = kRawValueMax;
    } else if (value < kIntMin) {
      value_ = kRawValueMin;
    } else {
      value_ = static_cast<UnsignedStorageType>(value) << kFractionalBits;
    }
  }

  ALWAYS_INLINE constexpr void SaturatedSetNonAsm(unsigned value) {
    if (value >= static_cast<UnsignedStorageType>(kIntMax)) {
      value_ = kRawValueMax;
    } else {
      value_ = static_cast<UnsignedStorageType>(value) << kFractionalBits;
    }
  }

  Storage value_;
};

using LayoutUnit = FixedPoint<6, int32_t>;
using TextRunLayoutUnit = FixedPoint<16, int32_t>;
using InlineLayoutUnit = FixedPoint<16, int64_t>;

// kIndefiniteSize is a special value used within layout code. It is typical
// within layout to have sizes which are only allowed to be non-negative or
// "indefinite". We use the value of "-1" to represent these indefinite values.
//
// It is common to clamp these indefinite values to zero.
// |LayoutUnit::ClampIndefiniteToZero| provides this functionality, and
// additionally DCHECKs that it isn't some other negative value.
inline constexpr LayoutUnit kIndefiniteSize(-1);

// TODO(kojii): Using three-way comparison (spaceship) operator for `int` makes
// too many cases ambiguous.
inline bool operator<=(const LayoutUnit& a, int b) {
  return a <= LayoutUnit(b);
}

inline bool operator<=(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) <= b;
}

inline bool operator>=(const LayoutUnit& a, int b) {
  return a >= LayoutUnit(b);
}

inline bool operator>=(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) >= b;
}

inline bool operator<(const LayoutUnit& a, int b) {
  return a < LayoutUnit(b);
}

inline bool operator<(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) < b;
}

inline bool operator>(const LayoutUnit& a, int b) {
  return a > LayoutUnit(b);
}

inline bool operator>(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) > b;
}

inline bool operator!=(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) != b;
}

inline bool operator!=(const LayoutUnit& a, int b) {
  return a != LayoutUnit(b);
}

inline bool operator==(const LayoutUnit& a, int b) {
  return a == LayoutUnit(b);
}

inline bool operator==(const int a, const LayoutUnit& b) {
  return LayoutUnit(a) == b;
}

// For multiplication that's prone to overflow, this bounds it to
// `FixedPoint::Max()` and `FixedPoint::Min()`.
template <unsigned fractional_bits, typename RawValue>
  requires(std::is_same_v<RawValue, int32_t>)
inline FixedPoint<fractional_bits, RawValue> BoundedMultiply(
    const FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, RawValue>& b) {
  int64_t result =
      static_cast<int64_t>(a.RawValue()) * static_cast<int64_t>(b.RawValue()) /
      FixedPoint<fractional_bits, RawValue>::kFixedPointDenominator;
  int32_t high = static_cast<int32_t>(result >> 32);
  int32_t low = static_cast<int32_t>(result);
  uint32_t saturated =
      (static_cast<uint32_t>(a.RawValue() ^ b.RawValue()) >> 31) +
      FixedPoint<fractional_bits, RawValue>::kRawValueMax;
  // If the higher 32 bits does not match the lower 32 with sign extension the
  // operation overflowed.
  if (high != low >> 31)
    result = saturated;

  return FixedPoint<fractional_bits, RawValue>::FromRawValue(
      static_cast<RawValue>(result));
}

template <unsigned fractional_bits, typename RawValue>
  requires(std::is_same_v<RawValue, int32_t>)
inline FixedPoint<fractional_bits, RawValue> operator*(
    const FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, RawValue>& b) {
  return BoundedMultiply(a, b);
}

inline double operator*(const LayoutUnit& a, double b) {
  return a.ToDouble() * b;
}

inline float operator*(const LayoutUnit& a, float b) {
  return a.ToFloat() * b;
}

template <unsigned fractional_bits, typename RawValue>
inline FixedPoint<fractional_bits, RawValue> operator*(
    const FixedPoint<fractional_bits, RawValue> a,
    std::integral auto b) {
  return FixedPoint<fractional_bits, RawValue>::FromRawValue(
      base::ClampMul(a.RawValue(), b));
}

inline LayoutUnit operator*(std::integral auto a, const LayoutUnit& b) {
  return b * a;
}

constexpr float operator*(const float a, const LayoutUnit& b) {
  return a * b.ToFloat();
}

constexpr double operator*(const double a, const LayoutUnit& b) {
  return a * b.ToDouble();
}

template <unsigned fractional_bits, typename RawValue>
  requires(std::is_same_v<RawValue, int32_t>)
inline FixedPoint<fractional_bits, RawValue> operator/(
    const FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, RawValue>& b) {
  int64_t raw_val =
      static_cast<int64_t>(
          FixedPoint<fractional_bits, RawValue>::kFixedPointDenominator) *
      a.RawValue() / b.RawValue();
  return FixedPoint<fractional_bits, RawValue>::FromRawValueWithClamp(raw_val);
}

template <unsigned fractional_bits, typename RawValue>
inline FixedPoint<fractional_bits, RawValue>
FixedPoint<fractional_bits, RawValue>::MulDiv(FixedPoint m,
                                              FixedPoint d) const {
  int64_t n = static_cast<int64_t>(RawValue()) * m.RawValue();
  int64_t q = n / d.RawValue();
  return FromRawValueWithClamp(q);
}

constexpr float operator/(const LayoutUnit& a, float b) {
  return a.ToFloat() / b;
}

constexpr double operator/(const LayoutUnit& a, double b) {
  return a.ToDouble() / b;
}

template <unsigned fractional_bits, typename RawValue>
inline FixedPoint<fractional_bits, RawValue> operator/(
    const FixedPoint<fractional_bits, RawValue>& a,
    std::integral auto b) {
  return FixedPoint<fractional_bits, RawValue>::FromRawValue(a.RawValue() / b);
}

constexpr float operator/(const float a, const LayoutUnit& b) {
  return a / b.ToFloat();
}

constexpr double operator/(const double a, const LayoutUnit& b) {
  return a / b.ToDouble();
}

inline LayoutUnit operator/(std::integral auto a, const LayoutUnit& b) {
  return LayoutUnit(a) / b;
}

template <unsigned fractional_bits, typename RawValue>
ALWAYS_INLINE FixedPoint<fractional_bits, RawValue> operator+(
    const FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, RawValue>& b) {
  return FixedPoint<fractional_bits, RawValue>::FromRawValue(
      base::ClampAdd(a.RawValue(), b.RawValue()).RawValue());
}

inline LayoutUnit operator+(const LayoutUnit& a, std::integral auto b) {
  return a + LayoutUnit(b);
}

template <unsigned fractional_bits, typename RawValue>
inline float operator+(const FixedPoint<fractional_bits, RawValue>& a,
                       float b) {
  return a.ToFloat() + b;
}

inline double operator+(const LayoutUnit& a, double b) {
  return a.ToDouble() + b;
}

inline LayoutUnit operator+(std::integral auto a, const LayoutUnit& b) {
  return LayoutUnit(a) + b;
}

constexpr float operator+(const float a, const LayoutUnit& b) {
  return a + b.ToFloat();
}

constexpr double operator+(const double a, const LayoutUnit& b) {
  return a + b.ToDouble();
}

ALWAYS_INLINE LayoutUnit operator-(const LayoutUnit& a, const LayoutUnit& b) {
  return LayoutUnit::FromRawValue(
      base::ClampSub(a.RawValue(), b.RawValue()).RawValue());
}

inline LayoutUnit operator-(const LayoutUnit& a, std::integral auto b) {
  return a - LayoutUnit(b);
}

constexpr float operator-(const LayoutUnit& a, float b) {
  return a.ToFloat() - b;
}

constexpr double operator-(const LayoutUnit& a, double b) {
  return a.ToDouble() - b;
}

inline LayoutUnit operator-(std::integral auto a, const LayoutUnit& b) {
  return LayoutUnit(a) - b;
}

constexpr float operator-(const float a, const LayoutUnit& b) {
  return a - b.ToFloat();
}

template <unsigned fractional_bits, typename RawValue>
inline FixedPoint<fractional_bits, RawValue> operator-(
    const FixedPoint<fractional_bits, RawValue>& a) {
  return FixedPoint<fractional_bits, RawValue>::FromRawValue(
      (-base::MakeClampedNum(a.RawValue())).RawValue());
}

// Returns the remainder after a division with integer results.
// This calculates the modulo so that:
//   a = static_cast<int>(a / b) * b + IntMod(a, b).
inline LayoutUnit IntMod(const LayoutUnit& a, const LayoutUnit& b) {
  return LayoutUnit::FromRawValue(a.RawValue() % b.RawValue());
}

template <unsigned fractional_bits, typename RawValue, typename SourceStorage>
  requires(sizeof(SourceStorage) <= sizeof(RawValue))
inline FixedPoint<fractional_bits, RawValue>& operator+=(
    FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, SourceStorage>& b) {
  a.SetRawValue(base::ClampAdd(a.RawValue(), b.RawValue()).RawValue());
  return a;
}

template <unsigned fractional_bits, typename RawValue, typename SourceStorage>
  requires(sizeof(SourceStorage) <= sizeof(RawValue))
inline FixedPoint<fractional_bits, RawValue> operator+(
    const FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, SourceStorage>& b) {
  FixedPoint<fractional_bits, RawValue> r = a;
  r += b;
  return r;
}

inline LayoutUnit& operator+=(LayoutUnit& a, std::integral auto b) {
  a = a + LayoutUnit(b);
  return a;
}

inline LayoutUnit& operator+=(LayoutUnit& a, float b) {
  a = LayoutUnit(a + b);
  return a;
}

inline float& operator+=(float& a, const LayoutUnit& b) {
  a = a + b;
  return a;
}

inline LayoutUnit& operator-=(LayoutUnit& a, std::integral auto b) {
  a = a - LayoutUnit(b);
  return a;
}

template <unsigned fractional_bits, typename RawValue>
inline FixedPoint<fractional_bits, RawValue>& operator-=(
    FixedPoint<fractional_bits, RawValue>& a,
    const FixedPoint<fractional_bits, RawValue>& b) {
  a.SetRawValue(base::ClampSub(a.RawValue(), b.RawValue()).RawValue());
  return a;
}

inline LayoutUnit& operator-=(LayoutUnit& a, float b) {
  a = LayoutUnit(a - b);
  return a;
}

inline float& operator-=(float& a, const LayoutUnit& b) {
  a = a - b;
  return a;
}

inline LayoutUnit& operator*=(LayoutUnit& a, const LayoutUnit& b) {
  a = a * b;
  return a;
}

inline LayoutUnit& operator*=(LayoutUnit& a, float b) {
  a = LayoutUnit(a * b);
  return a;
}

inline float& operator*=(float& a, const LayoutUnit& b) {
  a = a * b;
  return a;
}

inline LayoutUnit& operator/=(LayoutUnit& a, const LayoutUnit& b) {
  a = a / b;
  return a;
}

inline LayoutUnit& operator/=(LayoutUnit& a, float b) {
  a = LayoutUnit(a / b);
  return a;
}

inline float& operator/=(float& a, const LayoutUnit& b) {
  a = a / b;
  return a;
}

inline int SnapSizeToPixel(LayoutUnit size, LayoutUnit location) {
  LayoutUnit fraction = location.Fraction();
  int result = (fraction + size).Round() - fraction.Round();
  if (result == 0 && (size.RawValue() > 4 || size.RawValue() < -4))
      [[unlikely]] {
    return size > 0 ? 1 : -1;
  }
  return result;
}

inline int SnapSizeToPixelAllowingZero(LayoutUnit size, LayoutUnit location) {
  LayoutUnit fraction = location.Fraction();
  return (fraction + size).Round() - fraction.Round();
}

inline int RoundToInt(LayoutUnit value) {
  return value.Round();
}

inline int FloorToInt(LayoutUnit value) {
  return value.Floor();
}

inline int CeilToInt(LayoutUnit value) {
  return value.Ceil();
}

inline LayoutUnit AbsoluteValue(const LayoutUnit& value) {
  return value.Abs();
}

template <unsigned fractional_bits, typename RawValue>
inline std::optional<FixedPoint<fractional_bits, RawValue>>
FixedPoint<fractional_bits, RawValue>::NullOptIf(FixedPoint null_value) const {
  if (*this == null_value) {
    return std::nullopt;
  }
  return *this;
}

#if defined(ARCH_CPU_ARM_FAMILY) && defined(ARCH_CPU_32_BITS) && \
    defined(COMPILER_GCC) && !BUILDFLAG(IS_NACL) && __OPTIMIZE__
inline int GetMaxSaturatedSetResultForTesting() {
  // For ARM Asm version the set function maxes out to the biggest
  // possible integer part with the fractional part zero'd out.
  // e.g. 0x7fffffc0.
  return LayoutUnit::kRawValueMax & ~(LayoutUnit::kFixedPointDenominator - 1);
}

inline int GetMinSaturatedSetResultForTesting() {
  return LayoutUnit::kRawValueMin;
}
#else
ALWAYS_INLINE int GetMaxSaturatedSetResultForTesting() {
  // For C version the set function maxes out to max int, this differs from
  // the ARM asm version.
  return LayoutUnit::kRawValueMax;
}

ALWAYS_INLINE int GetMinSaturatedSetResultForTesting() {
  return LayoutUnit::kRawValueMin;
}
#endif  // CPU(ARM) && COMPILER(GCC)

template <unsigned fractional_bits, typename RawValue>
PLATFORM_EXPORT std::ostream& operator<<(
    std::ostream&,
    const FixedPoint<fractional_bits, RawValue>&);

}  // namespace blink

WTF_ALLOW_MOVE_INIT_AND_COMPARE_WITH_MEM_FUNCTIONS(blink::LayoutUnit)

#endif  // THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_LAYOUT_UNIT_H_