File: math_functions.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (273 lines) | stat: -rw-r--r-- 9,628 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright 2023 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_MATH_FUNCTIONS_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_MATH_FUNCTIONS_H_

#include <cfloat>
#include <cmath>
#include <optional>
#include <type_traits>
#include <utility>

#include "base/notreached.h"
#include "ui/gfx/geometry/sin_cos_degrees.h"

namespace blink {

namespace {

template <class ValueType>
std::pair<ValueType, ValueType> GetNearestMultiples(ValueType a, ValueType b) {
  using std::swap;
  bool is_negative = a < 0.0;
  a = std::abs(a);
  b = std::abs(b);
  // To get rid of rounding and range problems we use std::fmod
  // to get the lower to A multiple of B.
  ValueType c = -std::fmod(a, b);
  ValueType lower = a + c;
  // Sort a, b, c by increasing magnitude so that a + b + c later can
  // avoid rounding problems (e.g., if one number is very small compared to
  // other).
  if (std::abs(a) > std::abs(c)) {
    swap(a, c);
  }
  if (std::abs(a) > std::abs(b)) {
    swap(a, b);
  }
  if (std::abs(b) > std::abs(c)) {
    swap(b, c);
  }
  ValueType upper = a + b + c;
  if (is_negative) {
    swap(lower, upper);
    lower = -lower;
    upper = -upper;
  }
  return {lower, upper};
}

template <class OperatorType, typename ValueType>
std::optional<ValueType> PreCheckSteppedValueFunctionArguments(OperatorType op,
                                                               ValueType a,
                                                               ValueType b) {
  // In round(A, B), if B is 0, the result is NaN.
  // In mod(A, B) or rem(A, B), if B is 0, the result is NaN.
  // If A and B are both infinite, the result is NaN.
  if (b == 0.0 || (std::isinf(a) && std::isinf(b))) {
    return std::numeric_limits<ValueType>::quiet_NaN();
  }
  // If A is exactly equal to an integer multiple of B,
  // round() resolves to A exactly.
  // If A is infinite but B is finite, the result is the same infinity.
  if (OperatorType::kRoundNearest <= op && op <= OperatorType::kRoundToZero &&
      (std::fmod(a, b) == 0.0 || (std::isinf(a) && !std::isinf(b)))) {
    return a;
  }
  // In mod(A, B) or rem(A, B), if A is infinite, the result is NaN.
  if (OperatorType::kMod <= op && op <= OperatorType::kRem && std::isinf(a)) {
    return std::numeric_limits<ValueType>::quiet_NaN();
  }
  return {};
}

template <typename T>
  requires std::floating_point<T>
T TanDegrees(T degrees) {
  // Use table values for tan() if possible.
  // We pick a pretty arbitrary limit that should be safe.
  if (degrees > -90000000.0 && degrees < 90000000.0) {
    // Make sure 0, 45, 90, 135, 180, 225 and 270 degrees get exact results.
    T n45degrees = degrees / 45.0;
    int octant = static_cast<int>(n45degrees);
    if (octant == n45degrees) {
      constexpr std::array<T, 8> kTanN45 = {
          /* 0deg */ 0.0,
          /* 45deg */ 1.0,
          /* 90deg */ std::numeric_limits<T>::infinity(),
          /* 135deg */ -1.0,
          /* 180deg */ 0.0,
          /* 225deg */ 1.0,
          /* 270deg */ -std::numeric_limits<T>::infinity(),
          /* 315deg */ -1.0,
      };
      return kTanN45[octant & 7];
    }
  }
  // Slow path for non-table cases.
  T x = Deg2rad(degrees);
  return std::tan(x);
}

}  // namespace

template <class OperatorType, typename ValueType>
  requires std::is_enum_v<OperatorType> && std::floating_point<ValueType>
ValueType EvaluateTrigonometricFunction(
    OperatorType op,
    ValueType a,
    std::optional<ValueType>(b) = std::nullopt) {
  switch (op) {
    case OperatorType::kSin: {
      return gfx::SinCosDegrees(a).sin;
    }
    case OperatorType::kCos: {
      return gfx::SinCosDegrees(a).cos;
    }
    case OperatorType::kTan: {
      return TanDegrees(a);
    }
    case OperatorType::kAsin: {
      ValueType value = Rad2deg(std::asin(a));
      DCHECK(value >= -90 && value <= 90 || std::isnan(value));
      return value;
    }
    case OperatorType::kAcos: {
      ValueType value = Rad2deg(std::acos(a));
      DCHECK(value >= 0 && value <= 180 || std::isnan(value));
      return value;
    }
    case OperatorType::kAtan: {
      ValueType value = Rad2deg(std::atan(a));
      DCHECK(value >= -90 && value <= 90 || std::isnan(value));
      return value;
    }
    case OperatorType::kAtan2: {
      DCHECK(b.has_value());
      ValueType value = Rad2deg(std::atan2(a, b.value()));
      DCHECK(value >= -180 && value <= 180 || std::isnan(value));
      return value;
    }
    default:
      NOTREACHED();
  }
}

template <class OperatorType, typename ValueType>
  requires std::is_enum_v<OperatorType> && std::floating_point<ValueType>
ValueType EvaluateSteppedValueFunction(OperatorType op,
                                       ValueType a,
                                       ValueType b) {
  // https://drafts.csswg.org/css-values/#round-infinities
  std::optional<ValueType> pre_check =
      PreCheckSteppedValueFunctionArguments(op, a, b);
  if (pre_check.has_value()) {
    return pre_check.value();
  }
  // If A is finite but B is infinite, the result depends
  // on the <rounding-strategy> and the sign of A:
  // -- nearest, to-zero
  // If A is positive or +0.0, return +0.0. Otherwise, return -0.0.
  // -- up
  // If A is positive (not zero), return +∞. If A is +0.0, return +0.0.
  // Otherwise, return -0.0. down If A is negative (not zero), return −∞. If A
  // is -0.0, return -0.0. Otherwise, return +0.0. If A is infinite but B is
  // finite, the result is the same infinity.
  auto [lower, upper] = GetNearestMultiples(a, b);
  switch (op) {
    case OperatorType::kRoundNearest: {
      if (!std::isinf(a) && std::isinf(b)) {
        return std::signbit(a) ? -0.0 : +0.0;
      } else {
        // In the negative case we need to swap lower and upper for the nearest
        // rounding. This also means tie-breaking should pick the lower rather
        // than upper,
        const bool a_is_negative = a < 0.0;
        if (a_is_negative) {
          using std::swap;
          swap(lower, upper);
        }
        const ValueType distance = std::abs(std::fmod(a, b));
        const ValueType half_b = std::abs(b) / 2;
        if (distance < half_b || (a_is_negative && distance == half_b)) {
          return lower;
        } else {
          return upper;
        }
      }
    }
    case OperatorType::kRoundUp: {
      if (!std::isinf(a) && std::isinf(b)) {
        if (!a) {
          return a;
        } else {
          return std::signbit(a) ? -0.0
                                 : std::numeric_limits<ValueType>::infinity();
        }
      } else {
        return upper;
      }
    }
    case OperatorType::kRoundDown: {
      if (!std::isinf(a) && std::isinf(b)) {
        if (!a) {
          return a;
        } else {
          return std::signbit(a) ? -std::numeric_limits<ValueType>::infinity()
                                 : +0.0;
        }
      } else {
        return lower;
      }
    }
    case OperatorType::kRoundToZero: {
      if (!std::isinf(a) && std::isinf(b)) {
        return std::signbit(a) ? -0.0 : +0.0;
      } else {
        return std::abs(upper) < std::abs(lower) ? upper : lower;
      }
    }
    case OperatorType::kMod: {
      // In mod(A, B) only, if B is infinite and A has opposite sign to B
      // (including an oppositely-signed zero), the result is NaN.
      if (std::isinf(b) && std::signbit(a) != std::signbit(b)) {
        return std::numeric_limits<ValueType>::quiet_NaN();
      }
      // If both arguments are positive or both are negative:
      // the value of the function is equal to the value of A
      // shifted by the integer multiple of B that brings
      // the value between zero and B.
      // If the A value and the B step are on opposite sides of zero:
      // mod() (short for “modulus”) continues to choose the integer
      // multiple of B that puts the value between zero and B.
      // std::fmod - the returned value has the same sign as A
      // and is less than B in magnitude.
      ValueType result = std::fmod(a, b);
      if (std::signbit(result) != std::signbit(b)) {
        // When the absolute values of arguments are the same, but they
        // appear on different sides from zero, the result of std::fmod will be
        // either -0 (e.g. mod(-1, 1)), or +0 (e.g. mod(1, -1)), we need to swap
        // the sign of the resulting zero to match the sign of the B.
        if (std::abs(a) == std::abs(b)) {
          return -result;
        }
        // If the result is on opposite side of zero from B,
        // put it between 0 and B. As the result of std::fmod is less
        // than B in magnitude, adding B would perform a correct shift.
        return result + b;
      }
      return result;
    }
    case OperatorType::kRem: {
      // If both arguments are positive or both are negative:
      // the value of the function is equal to the value of A
      // shifted by the integer multiple of B that brings
      // the value between zero and B.
      // If the A value and the B step are on opposite sides of zero:
      // rem() (short for "remainder") chooses the integer multiple of B
      // that puts the value between zero and -B,
      // avoiding changing the sign of the value.
      // std::fmod - the returned value has the same sign as A
      // and is less than B in magnitude.
      return std::fmod(a, b);
    }
    default:
      NOTREACHED();
  }
}

}  // namespace blink

#endif  // THIRD_PARTY_BLINK_RENDERER_PLATFORM_GEOMETRY_MATH_FUNCTIONS_H_