1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/graphics/dark_mode_image_classifier.h"
#include <array>
#include <optional>
#include <set>
#include "base/memory/singleton.h"
#include "third_party/blink/renderer/platform/graphics/dark_mode_settings.h"
#include "third_party/blink/renderer/platform/graphics/darkmode/darkmode_classifier.h"
#include "ui/gfx/geometry/size.h"
namespace blink {
namespace {
// Decision tree lower and upper thresholds for grayscale and color images.
constexpr std::array<float, 2> kLowColorCountThreshold = {0.8125, 0.015137};
constexpr std::array<float, 2> kHighColorCountThreshold = {1, 0.025635};
bool IsColorGray(const SkColor& color) {
return abs(static_cast<int>(SkColorGetR(color)) -
static_cast<int>(SkColorGetG(color))) +
abs(static_cast<int>(SkColorGetG(color)) -
static_cast<int>(SkColorGetB(color))) <=
8;
}
bool IsColorTransparent(const SkColor& color) {
return (SkColorGetA(color) < 128);
}
const int kMaxSampledPixels = 1000;
const int kMaxBlocks = 10;
const float kMinOpaquePixelPercentageForForeground = 0.2;
} // namespace
DarkModeImageClassifier::DarkModeImageClassifier(
DarkModeImageClassifierPolicy image_classifier_policy)
: image_classifier_policy_(image_classifier_policy) {}
DarkModeImageClassifier::~DarkModeImageClassifier() = default;
DarkModeResult DarkModeImageClassifier::Classify(const SkPixmap& pixmap,
const SkIRect& src) const {
// Empty pixmap or |src| out of bounds cannot be classified.
SkIRect bounds = pixmap.bounds();
if (src.isEmpty() || bounds.isEmpty() || !bounds.contains(src) ||
!pixmap.addr())
return DarkModeResult::kDoNotApplyFilter;
auto features_or_null = GetFeatures(pixmap, src);
if (!features_or_null)
return DarkModeResult::kDoNotApplyFilter;
return ClassifyWithFeatures(features_or_null.value());
}
std::optional<DarkModeImageClassifier::Features>
DarkModeImageClassifier::GetFeatures(const SkPixmap& pixmap,
const SkIRect& src) const {
DCHECK(!pixmap.bounds().isEmpty());
float transparency_ratio;
float background_ratio;
std::vector<SkColor> sampled_pixels;
GetSamples(pixmap, src, &sampled_pixels, &transparency_ratio,
&background_ratio);
// TODO(https://crbug.com/945434): Investigate why an incorrect resource is
// loaded and how we can fetch the correct resource. This condition will
// prevent going further with the rest of the classification logic.
if (sampled_pixels.size() == 0)
return std::nullopt;
return ComputeFeatures(sampled_pixels, transparency_ratio, background_ratio);
}
// Extracts sample pixels from the image. The image is separated into uniformly
// distributed blocks through its width and height, each block is sampled, and
// checked to see if it seems to be background or foreground.
void DarkModeImageClassifier::GetSamples(const SkPixmap& pixmap,
const SkIRect& src,
std::vector<SkColor>* sampled_pixels,
float* transparency_ratio,
float* background_ratio) const {
DCHECK(!src.isEmpty());
int num_sampled_pixels =
std::min(kMaxSampledPixels, src.width() * src.height());
int num_blocks_x = std::min(kMaxBlocks, src.width());
int num_blocks_y = std::min(kMaxBlocks, src.height());
int pixels_per_block = num_sampled_pixels / (num_blocks_x * num_blocks_y);
int transparent_pixels = 0;
int opaque_pixels = 0;
int blocks_count = 0;
std::vector<int> horizontal_grid(num_blocks_x + 1);
std::vector<int> vertical_grid(num_blocks_y + 1);
float block_width = static_cast<float>(src.width()) / num_blocks_x;
float block_height = static_cast<float>(src.height()) / num_blocks_y;
for (int block = 0; block <= num_blocks_x; block++) {
horizontal_grid[block] =
src.x() + static_cast<int>(round(block_width * block));
}
for (int block = 0; block <= num_blocks_y; block++) {
vertical_grid[block] =
src.y() + static_cast<int>(round(block_height * block));
}
sampled_pixels->clear();
std::vector<SkIRect> foreground_blocks;
for (int y = 0; y < num_blocks_y; y++) {
for (int x = 0; x < num_blocks_x; x++) {
SkIRect block =
SkIRect::MakeXYWH(horizontal_grid[x], vertical_grid[y],
horizontal_grid[x + 1] - horizontal_grid[x],
vertical_grid[y + 1] - vertical_grid[y]);
std::vector<SkColor> block_samples;
int block_transparent_pixels;
GetBlockSamples(pixmap, block, pixels_per_block, &block_samples,
&block_transparent_pixels);
opaque_pixels += static_cast<int>(block_samples.size());
transparent_pixels += block_transparent_pixels;
sampled_pixels->insert(sampled_pixels->end(), block_samples.begin(),
block_samples.end());
if (opaque_pixels >
kMinOpaquePixelPercentageForForeground * pixels_per_block) {
foreground_blocks.push_back(block);
}
blocks_count++;
}
}
*transparency_ratio = static_cast<float>(transparent_pixels) /
(transparent_pixels + opaque_pixels);
*background_ratio =
1.0 - static_cast<float>(foreground_blocks.size()) / blocks_count;
}
// Selects samples at regular intervals from a block of the image.
// Returns the opaque sampled pixels, and the number of transparent
// sampled pixels.
void DarkModeImageClassifier::GetBlockSamples(
const SkPixmap& pixmap,
const SkIRect& block,
const int required_samples_count,
std::vector<SkColor>* sampled_pixels,
int* transparent_pixels_count) const {
*transparent_pixels_count = 0;
DCHECK(pixmap.bounds().contains(block));
sampled_pixels->clear();
int cx = static_cast<int>(
ceil(static_cast<float>(block.width()) / sqrt(required_samples_count)));
int cy = static_cast<int>(
ceil(static_cast<float>(block.height()) / sqrt(required_samples_count)));
for (int y = block.y(); y < block.bottom(); y += cy) {
for (int x = block.x(); x < block.right(); x += cx) {
SkColor new_sample = pixmap.getColor(x, y);
if (IsColorTransparent(new_sample))
(*transparent_pixels_count)++;
else
sampled_pixels->push_back(new_sample);
}
}
}
DarkModeImageClassifier::Features DarkModeImageClassifier::ComputeFeatures(
const std::vector<SkColor>& sampled_pixels,
const float transparency_ratio,
const float background_ratio) const {
int samples_count = static_cast<int>(sampled_pixels.size());
// Is image grayscale.
int color_pixels = 0;
for (const SkColor& sample : sampled_pixels) {
if (!IsColorGray(sample))
color_pixels++;
}
ColorMode color_mode = (color_pixels > samples_count / 100)
? ColorMode::kColor
: ColorMode::kGrayscale;
DarkModeImageClassifier::Features features;
features.is_colorful = color_mode == ColorMode::kColor;
features.color_buckets_ratio =
ComputeColorBucketsRatio(sampled_pixels, color_mode);
features.transparency_ratio = transparency_ratio;
features.background_ratio = background_ratio;
return features;
}
float DarkModeImageClassifier::ComputeColorBucketsRatio(
const std::vector<SkColor>& sampled_pixels,
const ColorMode color_mode) const {
std::set<uint16_t> buckets;
// If image is in color, use 4 bits per color channel, otherwise 4 bits for
// illumination.
if (color_mode == ColorMode::kColor) {
for (const SkColor& sample : sampled_pixels) {
uint16_t bucket = ((SkColorGetR(sample) >> 4) << 8) +
((SkColorGetG(sample) >> 4) << 4) +
((SkColorGetB(sample) >> 4));
buckets.insert(bucket);
}
} else {
for (const SkColor& sample : sampled_pixels) {
uint16_t illumination =
(SkColorGetR(sample) * 5 + SkColorGetG(sample) * 3 +
SkColorGetB(sample) * 2) /
10;
buckets.insert(illumination / 16);
}
}
// Using 4 bit per channel representation of each color bucket, there would be
// 2^4 buckets for grayscale images and 2^12 for color images.
constexpr std::array<float, 2> kMaxBuckets = {16, 4096};
return static_cast<float>(buckets.size()) /
kMaxBuckets[color_mode == ColorMode::kColor];
}
DarkModeResult DarkModeImageClassifier::ClassifyWithFeatures(
const Features& features) const {
if (image_classifier_policy_ ==
DarkModeImageClassifierPolicy::kTransparencyAndNumColors) {
return (features.transparency_ratio > 0 &&
features.color_buckets_ratio < static_cast<float>(0.5))
? DarkModeResult::kApplyFilter
: DarkModeResult::kDoNotApplyFilter;
}
DCHECK(image_classifier_policy_ ==
DarkModeImageClassifierPolicy::kNumColorsWithMlFallback);
DarkModeResult result = ClassifyUsingDecisionTree(features);
// If decision tree cannot decide, we use a neural network to decide whether
// to filter or not based on all the features.
if (result == DarkModeResult::kNotClassified) {
darkmode_tfnative_model::FixedAllocations nn_temp;
float nn_out;
// The neural network expects these features to be in a specific order
// within float array. Do not change the order here without also changing
// the neural network code!
float feature_list[]{
features.is_colorful ? 1.0f : 0.0f, features.color_buckets_ratio,
features.transparency_ratio, features.background_ratio};
darkmode_tfnative_model::Inference(feature_list, &nn_out, &nn_temp);
result = nn_out > 0 ? DarkModeResult::kApplyFilter
: DarkModeResult::kDoNotApplyFilter;
}
return result;
}
DarkModeResult DarkModeImageClassifier::ClassifyUsingDecisionTree(
const DarkModeImageClassifier::Features& features) const {
float low_color_count_threshold =
kLowColorCountThreshold[features.is_colorful];
float high_color_count_threshold =
kHighColorCountThreshold[features.is_colorful];
// Very few colors means it's not a photo, apply the filter.
if (features.color_buckets_ratio < low_color_count_threshold)
return DarkModeResult::kApplyFilter;
// Too many colors means it's probably photorealistic, do not apply it.
if (features.color_buckets_ratio > high_color_count_threshold)
return DarkModeResult::kDoNotApplyFilter;
// In-between, decision tree cannot give a precise result.
return DarkModeResult::kNotClassified;
}
} // namespace blink
|