1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/graphics/paint/geometry_mapper.h"
#include "base/containers/adapters.h"
#include "third_party/blink/renderer/platform/geometry/infinite_int_rect.h"
#include "third_party/blink/renderer/platform/graphics/paint/scroll_paint_property_node.h"
#include "third_party/blink/renderer/platform/heap/collection_support/heap_vector.h"
#include "third_party/blink/renderer/platform/runtime_enabled_features.h"
#include "ui/gfx/geometry/rect_conversions.h"
namespace blink {
namespace {
gfx::SizeF MaxScrollOffset(
const TransformPaintPropertyNode& scroll_translation) {
DCHECK(scroll_translation.ScrollNode());
return gfx::SizeF(scroll_translation.ScrollNode()->ContentsRect().size() -
scroll_translation.ScrollNode()->ContainerRect().size());
}
// These two functions are used for compositing overlap only, where the effect
// node doesn't matter.
PropertyTreeState ScrollContainerState(
const TransformPaintPropertyNode& scroll_translation) {
PropertyTreeState state(*scroll_translation.UnaliasedParent(),
ClipPaintPropertyNode::Root(),
EffectPaintPropertyNode::Root());
if (auto* scroll_clip = scroll_translation.ScrollNode()->OverflowClipNode()) {
state.SetClip(*scroll_clip->UnaliasedParent());
}
return state;
}
PropertyTreeState ScrollingContentsState(
const TransformPaintPropertyNode& scroll_translation) {
PropertyTreeState state(scroll_translation, ClipPaintPropertyNode::Root(),
EffectPaintPropertyNode::Root());
if (auto* scroll_clip = scroll_translation.ScrollNode()->OverflowClipNode()) {
state.SetClip(*scroll_clip);
}
return state;
}
} // namespace
gfx::Transform GeometryMapper::SourceToDestinationProjection(
const TransformPaintPropertyNode& source,
const TransformPaintPropertyNode& destination) {
ExtraProjectionResult extra_result;
bool success = false;
return SourceToDestinationProjectionInternal(source, destination,
extra_result, success);
}
// Returns flatten(destination_to_screen)^-1 * flatten(source_to_screen)
//
// In case that source and destination are coplanar in tree hierarchy [1],
// computes destination_to_plane_root ^ -1 * source_to_plane_root.
// It can be proved that [2] the result will be the same (except numerical
// errors) when the plane root has invertible screen projection, and this
// offers fallback definition when plane root is singular. For example:
// <div style="transform:rotateY(90deg); overflow:scroll;">
// <div id="A" style="opacity:0.5;">
// <div id="B" style="position:absolute;"></div>
// </div>
// </div>
// Both A and B have non-invertible screen projection, nevertheless it is
// useful to define projection between A and B. Say, the transform may be
// animated in compositor thus become visible.
// As SPv1 treats 3D transforms as compositing trigger, that implies mappings
// within the same compositing layer can only contain 2D transforms, thus
// intra-composited-layer queries are guaranteed to be handled correctly.
//
// [1] As defined by that all local transforms between source and some common
// ancestor 'plane root' and all local transforms between the destination
// and the plane root being flat.
// [2] destination_to_screen = plane_root_to_screen * destination_to_plane_root
// source_to_screen = plane_root_to_screen * source_to_plane_root
// output = flatten(destination_to_screen)^-1 * flatten(source_to_screen)
// = flatten(plane_root_to_screen * destination_to_plane_root)^-1 *
// flatten(plane_root_to_screen * source_to_plane_root)
// Because both destination_to_plane_root and source_to_plane_root are
// already flat,
// = flatten(plane_root_to_screen * flatten(destination_to_plane_root))^-1 *
// flatten(plane_root_to_screen * flatten(source_to_plane_root))
// By flatten lemma [3] flatten(A * flatten(B)) = flatten(A) * flatten(B),
// = flatten(destination_to_plane_root)^-1 *
// flatten(plane_root_to_screen)^-1 *
// flatten(plane_root_to_screen) * flatten(source_to_plane_root)
// If flatten(plane_root_to_screen) is invertible, they cancel out:
// = flatten(destination_to_plane_root)^-1 * flatten(source_to_plane_root)
// = destination_to_plane_root^-1 * source_to_plane_root
// [3] Flatten lemma: https://goo.gl/DNKyOc
gfx::Transform GeometryMapper::SourceToDestinationProjectionInternal(
const TransformPaintPropertyNode& source,
const TransformPaintPropertyNode& destination,
ExtraProjectionResult& extra_result,
bool& success) {
success = true;
if (&source == &destination)
return gfx::Transform();
if (source.Parent() && &destination == &source.Parent()->Unalias()) {
extra_result.has_sticky_or_anchor_position =
source.RequiresCompositingForStickyPosition() ||
source.RequiresCompositingForAnchorPosition();
if (source.IsIdentityOr2dTranslation() && source.Origin().IsOrigin()) {
// The result will be translate(origin)*matrix*translate(-origin) which
// equals to matrix if the origin is zero or if the matrix is just
// identity or 2d translation.
extra_result.has_animation = source.HasActiveTransformAnimation();
return source.Matrix();
}
}
if (destination.IsIdentityOr2dTranslation() && destination.Parent() &&
&source == &destination.Parent()->Unalias() &&
!destination.HasActiveTransformAnimation()) {
return gfx::Transform::MakeTranslation(-destination.Get2dTranslation());
}
const auto& source_cache = source.GetTransformCache();
const auto& destination_cache = destination.GetTransformCache();
extra_result.has_sticky_or_anchor_position |=
source_cache.has_sticky_or_anchor_position();
// Case 1a (fast path of case 1b): check if source and destination are under
// the same 2d translation root.
if (source_cache.root_of_2d_translation() ==
destination_cache.root_of_2d_translation()) {
// We always use full matrix for animating transforms.
return gfx::Transform::MakeTranslation(
source_cache.to_2d_translation_root() -
destination_cache.to_2d_translation_root());
}
// Case 1b: Check if source and destination are known to be coplanar.
// Even if destination may have invertible screen projection,
// this formula is likely to be numerically more stable.
if (source_cache.plane_root() == destination_cache.plane_root()) {
extra_result.has_animation =
source_cache.has_animation_to_plane_root() ||
destination_cache.has_animation_to_plane_root();
if (&source == destination_cache.plane_root())
return destination_cache.from_plane_root();
if (&destination == source_cache.plane_root())
return source_cache.to_plane_root();
gfx::Transform matrix;
destination_cache.ApplyFromPlaneRoot(matrix);
source_cache.ApplyToPlaneRoot(matrix);
return matrix;
}
// Case 2: Check if we can fallback to the canonical definition of
// flatten(destination_to_screen)^-1 * flatten(source_to_screen)
// If flatten(destination_to_screen)^-1 is invalid, we are out of luck.
// Screen transform data are updated lazily because they are rarely used.
source.UpdateScreenTransform();
destination.UpdateScreenTransform();
extra_result.has_animation = source_cache.has_animation_to_screen() ||
destination_cache.has_animation_to_screen();
if (!destination_cache.projection_from_screen_is_valid()) {
success = false;
return gfx::Transform();
}
// Case 3: Compute:
// flatten(destination_to_screen)^-1 * flatten(source_to_screen)
const auto& root = TransformPaintPropertyNode::Root();
if (&source == &root)
return destination_cache.projection_from_screen();
gfx::Transform matrix;
destination_cache.ApplyProjectionFromScreen(matrix);
source_cache.ApplyToScreen(matrix);
matrix.Flatten();
return matrix;
}
float GeometryMapper::SourceToDestinationApproximateMinimumScale(
const TransformPaintPropertyNode& source,
const TransformPaintPropertyNode& destination) {
if (&source == &destination)
return 1.f;
const auto& source_cache = source.GetTransformCache();
const auto& destination_cache = destination.GetTransformCache();
if (source_cache.root_of_2d_translation() ==
destination_cache.root_of_2d_translation()) {
return 1.f;
}
gfx::RectF rect(0, 0, 1, 1);
SourceToDestinationRect(source, destination, rect);
return std::min(rect.width(), rect.height());
}
bool GeometryMapper::LocalToAncestorVisualRect(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
FloatClipRect& mapping_rect,
OverlayScrollbarClipBehavior clip_behavior,
VisualRectFlags flags) {
return LocalToAncestorVisualRectInternal<ForCompositingOverlap::kNo>(
local_state, ancestor_state, mapping_rect, clip_behavior, flags);
}
template <GeometryMapper::ForCompositingOverlap for_compositing_overlap>
bool GeometryMapper::LocalToAncestorVisualRectInternal(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
FloatClipRect& rect_to_map,
OverlayScrollbarClipBehavior clip_behavior,
VisualRectFlags flags) {
// Many effects (e.g. filters, clip-paths) can make a clip rect not tight.
if (&local_state.Effect() != &ancestor_state.Effect())
rect_to_map.ClearIsTight();
// The transform tree and the clip tree contain all information needed for
// visual rect mapping. Pixel-moving filters should have corresponding
// pixel-moving filter clip expanders in the clip tree.
if (&local_state.Transform() == &ancestor_state.Transform() &&
&local_state.Clip() == &ancestor_state.Clip()) {
return true;
}
if (!(flags & kIgnoreFilters) &&
&local_state.Clip() != &ancestor_state.Clip() &&
local_state.Clip().NearestPixelMovingFilterClip() !=
ancestor_state.Clip().NearestPixelMovingFilterClip()) {
return SlowLocalToAncestorVisualRectWithPixelMovingFilters<
for_compositing_overlap>(local_state, ancestor_state, rect_to_map,
clip_behavior, flags);
}
ExtraProjectionResult extra_result;
bool success = false;
gfx::Transform projection = SourceToDestinationProjectionInternal(
local_state.Transform(), ancestor_state.Transform(), extra_result,
success);
if (!success) {
// A failure implies either source-to-plane or destination-to-plane being
// singular. A notable example of singular source-to-plane from valid CSS:
// <div id="plane" style="transform:rotateY(180deg)">
// <div style="overflow:overflow">
// <div id="ancestor" style="opacity:0.5;">
// <div id="local" style="position:absolute; transform:scaleX(0);">
// </div>
// </div>
// </div>
// </div>
// Either way, the element won't be renderable thus returning empty rect.
rect_to_map = FloatClipRect(gfx::RectF());
return false;
}
if (for_compositing_overlap == ForCompositingOverlap::kYes &&
(extra_result.has_animation ||
extra_result.has_sticky_or_anchor_position)) {
// Assume during the animation, the sticky translation or the anchor
// position scroll translation can map |rect_to_map| to anywhere during
// animation or composited scroll. Ancestor clips will still apply.
// TODO(crbug.com/1026653): Use animation bounds instead of infinite rect.
// TODO(crbug.com/1117658): Use sticky bounds instead of infinite rect.
rect_to_map = InfiniteLooseFloatClipRect();
} else {
rect_to_map.Map(projection);
}
FloatClipRect clip_rect =
LocalToAncestorClipRectInternal<for_compositing_overlap>(
local_state.Clip(), ancestor_state.Clip(), ancestor_state.Transform(),
clip_behavior, flags);
// This is where we propagate the roundedness and tightness of |clip_rect|
// to |rect_to_map|.
if (flags & kEdgeInclusive) {
return rect_to_map.InclusiveIntersect(clip_rect);
}
rect_to_map.Intersect(clip_rect);
return !rect_to_map.Rect().IsEmpty();
}
template <GeometryMapper::ForCompositingOverlap for_compositing_overlap>
bool GeometryMapper::SlowLocalToAncestorVisualRectWithPixelMovingFilters(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
FloatClipRect& rect_to_map,
OverlayScrollbarClipBehavior clip_behavior,
VisualRectFlags flags) {
DCHECK(!(flags & kIgnoreFilters));
PropertyTreeState last_state = local_state;
last_state.SetEffect(ancestor_state.Effect());
const auto* ancestor_filter_clip =
ancestor_state.Clip().NearestPixelMovingFilterClip();
const auto* filter_clip = local_state.Clip().NearestPixelMovingFilterClip();
while (filter_clip != ancestor_filter_clip) {
if (!filter_clip) {
// Abnormal clip hierarchy.
rect_to_map = InfiniteLooseFloatClipRect();
return true;
}
PropertyTreeState new_state(filter_clip->LocalTransformSpace().Unalias(),
*filter_clip, last_state.Effect());
const auto* filter = filter_clip->PixelMovingFilter();
DCHECK(filter);
DCHECK_EQ(&filter->LocalTransformSpace().Unalias(), &new_state.Transform());
if (for_compositing_overlap == ForCompositingOverlap::kYes &&
filter->HasActiveFilterAnimation()) {
// Assume during the animation the filter can map |rect_to_map| to
// anywhere. Ancestor clips will still apply.
// TODO(crbug.com/1026653): Use animation bounds instead of infinite
// rect.
rect_to_map = InfiniteLooseFloatClipRect();
} else {
bool intersects =
LocalToAncestorVisualRectInternal<for_compositing_overlap>(
last_state, new_state, rect_to_map, clip_behavior, flags);
if (!intersects) {
rect_to_map = FloatClipRect(gfx::RectF());
return false;
}
if (!rect_to_map.IsInfinite()) {
rect_to_map.Rect() = gfx::RectF(
filter->MapRect(gfx::ToEnclosingRect(rect_to_map.Rect())));
}
}
last_state = new_state;
const auto* next_clip = filter_clip->UnaliasedParent();
DCHECK(next_clip);
last_state.SetClip(*next_clip);
filter_clip = next_clip->NearestPixelMovingFilterClip();
}
return LocalToAncestorVisualRectInternal<for_compositing_overlap>(
last_state, ancestor_state, rect_to_map, clip_behavior, flags);
}
FloatClipRect GeometryMapper::LocalToAncestorClipRect(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
OverlayScrollbarClipBehavior clip_behavior) {
const auto& local_clip = local_state.Clip();
const auto& ancestor_clip = ancestor_state.Clip();
if (&local_clip == &ancestor_clip)
return FloatClipRect();
auto result = LocalToAncestorClipRectInternal<ForCompositingOverlap::kNo>(
local_clip, ancestor_clip, ancestor_state.Transform(), clip_behavior);
// Many effects (e.g. filters, clip-paths) can make a clip rect not tight.
if (&local_state.Effect() != &ancestor_state.Effect())
result.ClearIsTight();
return result;
}
enum class ClipRectType { kPrecise, kPaint };
static FloatClipRect GetClipRect(
const ClipPaintPropertyNode& clip_node,
OverlayScrollbarClipBehavior clip_behavior,
ClipRectType rect_type = ClipRectType::kPaint) {
// TODO(crbug.com/1248598): Do we need to use PaintClipRect when mapping for
// painting/compositing?
FloatClipRect clip_rect;
if (clip_behavior == kExcludeOverlayScrollbarSizeForHitTesting) [[unlikely]] {
clip_rect = clip_node.LayoutClipRectExcludingOverlayScrollbars();
} else if (rect_type == ClipRectType::kPrecise) {
clip_rect = clip_node.PreciseLayoutClipRect();
} else {
clip_rect = clip_node.LayoutClipRect();
}
if (clip_node.ClipPath())
clip_rect.ClearIsTight();
return clip_rect;
}
template <GeometryMapper::ForCompositingOverlap for_compositing_overlap>
FloatClipRect GeometryMapper::LocalToAncestorClipRectInternal(
const ClipPaintPropertyNode& descendant_clip,
const ClipPaintPropertyNode& ancestor_clip,
const TransformPaintPropertyNode& ancestor_transform,
OverlayScrollbarClipBehavior clip_behavior,
VisualRectFlags flags) {
if (&descendant_clip == &ancestor_clip)
return FloatClipRect();
if (descendant_clip.UnaliasedParent() == &ancestor_clip &&
&descendant_clip.LocalTransformSpace() == &ancestor_transform) {
return GetClipRect(descendant_clip, clip_behavior,
(flags & kUsePreciseClipPath) ? ClipRectType::kPrecise
: ClipRectType::kPaint);
}
FloatClipRect clip;
const auto* clip_node = &descendant_clip;
// The average number of intermediate clips is very small in the real world.
// 16 was chosen based on the maximum size in a large, performance-intensive
// case. Details and links to Pinpoint trials: crbug.com/1468987.
HeapVector<Member<const ClipPaintPropertyNode>, 16> intermediate_nodes;
GeometryMapperClipCache::ClipAndTransform clip_and_transform(
&ancestor_clip, &ancestor_transform, clip_behavior);
// Iterate over the path from localState.clip to ancestor_state.clip. Stop if
// we've found a memoized (precomputed) clip for any particular node.
while (clip_node && clip_node != &ancestor_clip) {
const GeometryMapperClipCache::ClipCacheEntry* cached_clip = nullptr;
// Inclusive intersected clips are not cached at present.
// Precise clips for cc clip path animations are also not cached.
if (!(flags & kEdgeInclusive) &&
!((flags & kUsePreciseClipPath) &&
clip_node->IsForCompositeClipPathAnimation())) {
cached_clip = clip_node->GetClipCache().GetCachedClip(clip_and_transform);
}
if (for_compositing_overlap == ForCompositingOverlap::kYes && cached_clip &&
(cached_clip->has_transform_animation ||
cached_clip->has_sticky_transform)) {
// Don't use cached clip if it's transformed by any animating transform
// or sticky translation.
cached_clip = nullptr;
}
if (cached_clip) {
clip = cached_clip->clip_rect;
break;
}
intermediate_nodes.push_back(clip_node);
clip_node = clip_node->UnaliasedParent();
}
if (!clip_node) {
// Don't clip if the clip tree has abnormal hierarchy.
return InfiniteLooseFloatClipRect();
}
// Iterate down from the top intermediate node found in the previous loop,
// computing and memoizing clip rects as we go.
for (const auto& node : base::Reversed(intermediate_nodes)) {
ExtraProjectionResult extra_result;
bool success = false;
gfx::Transform projection = SourceToDestinationProjectionInternal(
node->LocalTransformSpace().Unalias(), ancestor_transform, extra_result,
success);
if (!success)
return FloatClipRect(gfx::RectF());
if (for_compositing_overlap == ForCompositingOverlap::kYes &&
(extra_result.has_animation ||
extra_result.has_sticky_or_anchor_position)) {
continue;
}
// This is where we generate the roundedness and tightness of clip rect
// from clip and transform properties, and propagate them to |clip|.
FloatClipRect mapped_rect(GetClipRect(*node, clip_behavior,
(flags & kUsePreciseClipPath)
? ClipRectType::kPrecise
: ClipRectType::kPaint));
mapped_rect.Map(projection);
if (flags & kEdgeInclusive) {
clip.InclusiveIntersect(mapped_rect);
} else {
clip.Intersect(mapped_rect);
// Inclusive intersected clips are not cached at present.
// Neither are precise clips for cc clip path animations
if (!((flags & kUsePreciseClipPath) &&
node->IsForCompositeClipPathAnimation())) {
node->GetClipCache().SetCachedClip(
GeometryMapperClipCache::ClipCacheEntry{
clip_and_transform, clip, extra_result.has_animation,
extra_result.has_sticky_or_anchor_position});
}
}
}
// Clips that are inclusive intersected or expanded for animation are not
// cached at present.
DCHECK(flags & kEdgeInclusive ||
((flags & kUsePreciseClipPath) &&
descendant_clip.IsForCompositeClipPathAnimation()) ||
for_compositing_overlap == ForCompositingOverlap::kYes ||
descendant_clip.GetClipCache()
.GetCachedClip(clip_and_transform)
->clip_rect == clip);
return clip;
}
bool GeometryMapper::MightOverlapForCompositing(
const gfx::RectF& rect1,
const PropertyTreeState& state1,
const gfx::RectF& rect2,
const PropertyTreeState& state2) {
if (&state1.Transform() == &state2.Transform() &&
&state1.Clip() == &state2.Clip()) {
return rect1.Intersects(rect2);
}
PropertyTreeState common_ancestor(
state1.Transform().LowestCommonAncestor(state2.Transform()).Unalias(),
state1.Clip().LowestCommonAncestor(state2.Clip()).Unalias(),
EffectPaintPropertyNode::Root());
const auto& scroll_translation1 =
state1.Transform().NearestScrollTranslationNode();
const auto& scroll_translation2 =
state2.Transform().NearestScrollTranslationNode();
auto new_state1 = state1;
auto new_state2 = state2;
// If any clip's transform space is under a different scroll translation,
// we need to ignore the clip because it may change by the different scroll
// translation. This includes cases such as a fixed-position element is
// clipped by an element in a scroller.
// This lambda returns true if we must assume maximum overlap.
auto adjust_for_clips =
[&common_ancestor](const TransformPaintPropertyNode& scroll_translation,
PropertyTreeState& state) -> bool {
for (const auto* clip = &state.Clip(); clip != &common_ancestor.Clip();
clip = clip->UnaliasedParent()) {
if (&clip->LocalTransformSpace()
.Unalias()
.NearestScrollTranslationNode() != &scroll_translation) {
if (state.Clip().NearestPixelMovingFilterClip() !=
clip->NearestPixelMovingFilterClip()) {
// We can't ignore pixel moving filter clips, so we simply assume
// maximum overlap.
return true;
}
// Ignore this clip.
state.SetClip(*clip->UnaliasedParent());
return false;
}
}
return false;
};
if (adjust_for_clips(scroll_translation1, new_state1) ||
adjust_for_clips(scroll_translation2, new_state2)) {
return true;
}
if (&scroll_translation1 == &scroll_translation2) [[likely]] {
return MightOverlapForCompositingInternal(common_ancestor, rect1, state1,
rect2, state2);
}
auto new_rect1 = rect1;
auto new_rect2 = rect2;
// Handle cases of overlap testing across scrollers.
// If we will test overlap across scroll translations, adjust each property
// tree state to be the parent of the highest scroll translation under
// |transform_lca| along the ancestor path, and the visual rect to contain
// all possible location of the original visual rect during scroll, thus we
// can avoid re-testing overlap on change of scroll offset.
const auto& scroll_translation_lca =
common_ancestor.Transform().NearestScrollTranslationNode();
auto adjust_rect_and_state =
[&scroll_translation_lca](
const TransformPaintPropertyNode* scroll_translation,
gfx::RectF& rect, PropertyTreeState& state) {
for (; scroll_translation != &scroll_translation_lca;
scroll_translation =
scroll_translation->ParentScrollTranslationNode()) {
MapVisualRectAboveScrollForCompositingOverlap(*scroll_translation,
rect, state);
}
};
adjust_rect_and_state(&scroll_translation1, new_rect1, new_state1);
adjust_rect_and_state(&scroll_translation2, new_rect2, new_state2);
return MightOverlapForCompositingInternal(common_ancestor, new_rect1,
new_state1, new_rect2, new_state2);
}
bool GeometryMapper::MightOverlapForCompositingInternal(
const PropertyTreeState& common_ancestor,
const gfx::RectF& rect1,
const PropertyTreeState& state1,
const gfx::RectF& rect2,
const PropertyTreeState& state2) {
auto v1 = VisualRectForCompositingOverlap(rect1, state1, common_ancestor);
auto v2 = VisualRectForCompositingOverlap(rect2, state2, common_ancestor);
return v1.Intersects(v2);
}
gfx::RectF GeometryMapper::VisualRectForCompositingOverlap(
const gfx::RectF& local_rect,
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state) {
FloatClipRect visual_rect(local_rect);
GeometryMapper::LocalToAncestorVisualRectInternal<
ForCompositingOverlap::kYes>(local_state, ancestor_state, visual_rect);
if (const std::optional<gfx::RectF> visibility_limit =
VisibilityLimit(ancestor_state)) {
visual_rect.Rect().Intersect(*visibility_limit);
}
return visual_rect.Rect();
}
// Maps a visual rect from a state below a scroll translation to the container
// space. The result is expanded to contain all possible locations in the
// container space of the input rect during scroll. `state` is also updated to
// the container space, with the effect node set to root as it doesn't matter
// in compositing overlap.
void GeometryMapper::MapVisualRectAboveScrollForCompositingOverlap(
const TransformPaintPropertyNode& scroll_translation,
gfx::RectF& rect,
PropertyTreeState& state) {
DCHECK_EQ(&state.Transform().NearestScrollTranslationNode(),
&scroll_translation);
DCHECK(scroll_translation.ScrollNode());
rect = VisualRectForCompositingOverlap(
rect, state, ScrollingContentsState(scroll_translation));
gfx::SizeF max_scroll_offset = MaxScrollOffset(scroll_translation);
// Expand the rect to the top-left direction by max_scroll_offset, which is
// equivalent to
// rect = Union(/*rect when scroll_offset is zero*/ rect,
// /*rect when scroll_offset is max*/ rect - max_scroll_offset)
// in the container space.
rect.Offset(-max_scroll_offset.width(), -max_scroll_offset.height());
rect.set_size(rect.size() + max_scroll_offset);
rect.Intersect(gfx::RectF(scroll_translation.ScrollNode()->ContainerRect()));
state = ScrollContainerState(scroll_translation);
}
bool GeometryMapper::LocalToAncestorVisualRectInternalForTesting(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
FloatClipRect& mapping_rect) {
return GeometryMapper::LocalToAncestorVisualRectInternal<
ForCompositingOverlap::kNo>(local_state, ancestor_state, mapping_rect);
}
bool GeometryMapper::
LocalToAncestorVisualRectInternalForCompositingOverlapForTesting(
const PropertyTreeState& local_state,
const PropertyTreeState& ancestor_state,
FloatClipRect& mapping_rect) {
return GeometryMapper::LocalToAncestorVisualRectInternal<
ForCompositingOverlap::kYes>(local_state, ancestor_state, mapping_rect);
}
std::optional<gfx::RectF> GeometryMapper::VisibilityLimit(
const PropertyTreeState& state) {
if (state.Effect().SelfOrAncestorParticipatesInViewTransition()) {
return std::nullopt;
}
if (&state.Clip().LocalTransformSpace() == &state.Transform()) {
return state.Clip().PaintClipRect().Rect();
}
if (const auto* scroll = state.Transform().ScrollNode()) {
return gfx::RectF(scroll->ContentsRect());
}
return std::nullopt;
}
void GeometryMapper::ClearCache() {
GeometryMapperTransformCache::ClearCache();
GeometryMapperClipCache::ClearCache();
}
} // namespace blink
|