1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
|
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// WARNING: Auto-generated by gen_crabbyavif_wrapper.py.
// Do not modify manually.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/platform/image-decoders/avif/crabbyavif_image_decoder.h"
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <array>
#include <memory>
#include <optional>
#include <utility>
#include "base/bits.h"
#include "base/containers/adapters.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/scoped_refptr.h"
#include "base/metrics/histogram_functions.h"
#include "base/numerics/safe_conversions.h"
#include "base/timer/elapsed_timer.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "media/base/video_color_space.h"
#include "skia/ext/cicp.h"
#include "third_party/blink/renderer/platform/image-decoders/fast_shared_buffer_reader.h"
#include "third_party/blink/renderer/platform/image-decoders/image_animation.h"
#include "third_party/blink/renderer/platform/image-decoders/image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/rw_buffer.h"
#include "third_party/crabbyavif/src/include/avif/avif.h"
#include "third_party/libyuv/include/libyuv.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "third_party/skia/include/private/SkXmp.h"
#include "ui/gfx/color_space.h"
#include "ui/gfx/icc_profile.h"
#if defined(ARCH_CPU_BIG_ENDIAN)
#error Blink assumes a little-endian target.
#endif
namespace blink {
namespace {
// The maximum AVIF file size we are willing to decode. This helps libavif
// detect invalid sizes and offsets in an AVIF file before the file size is
// known.
constexpr uint64_t kMaxAvifFileSize = 0x10000000; // 256 MB
const char* AvifDecoderErrorMessage(const crabbyavif::avifDecoder* decoder) {
// decoder->diag.error is a char array that stores a null-terminated C string.
return *decoder->diag.error != '\0' ? decoder->diag.error
: "(no error message)";
}
// Builds a gfx::ColorSpace from the ITU-T H.273 (CICP) color description.
gfx::ColorSpace GetColorSpace(
crabbyavif::avifColorPrimaries color_primaries,
crabbyavif::avifTransferCharacteristics transfer_characteristics,
crabbyavif::avifMatrixCoefficients matrix_coefficients,
crabbyavif::avifRange yuv_range,
bool grayscale) {
// (As of ISO/IEC 23000-22:2019 Amendment 2) MIAF Section 7.3.6.4 says:
// If a coded image has no associated colour property, the default property
// is defined as having colour_type equal to 'nclx' with properties as
// follows:
// – colour_primaries equal to 1,
// - transfer_characteristics equal to 13,
// - matrix_coefficients equal to 5 or 6 (which are functionally identical),
// and
// - full_range_flag equal to 1.
// ...
// These values correspond to crabbyavif::AVIF_COLOR_PRIMARIES_BT709,
// crabbyavif::AVIF_TRANSFER_CHARACTERISTICS_SRGB, and
// crabbyavif::AVIF_MATRIX_COEFFICIENTS_BT601, respectively.
//
// Note that this only specifies the default color property when the color
// property is absent. It does not really specify the default values for
// colour_primaries, transfer_characteristics, and matrix_coefficients when
// they are equal to 2 (unspecified). But we will interpret it as specifying
// the default values for these variables because we must choose some defaults
// and these are the most reasonable defaults to choose. We also advocate that
// all AVIF decoders choose these defaults:
// https://github.com/AOMediaCodec/av1-avif/issues/84
const auto primaries =
color_primaries == crabbyavif::AVIF_COLOR_PRIMARIES_UNSPECIFIED
? crabbyavif::AVIF_COLOR_PRIMARIES_BT709
: color_primaries;
const auto transfer =
transfer_characteristics ==
crabbyavif::AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED
? crabbyavif::AVIF_TRANSFER_CHARACTERISTICS_SRGB
: transfer_characteristics;
const auto matrix =
(grayscale ||
matrix_coefficients == crabbyavif::AVIF_MATRIX_COEFFICIENTS_UNSPECIFIED)
? crabbyavif::AVIF_MATRIX_COEFFICIENTS_BT601
: matrix_coefficients;
const auto range = yuv_range == crabbyavif::AVIF_RANGE_FULL
? gfx::ColorSpace::RangeID::FULL
: gfx::ColorSpace::RangeID::LIMITED;
media::VideoColorSpace color_space(primaries, transfer, matrix, range);
if (color_space.IsSpecified()) {
return color_space.ToGfxColorSpace();
}
// If the color space isn't specified by media::VideoColorSpace, use the
// default colorspace based on |yuv_range|.
if (yuv_range == crabbyavif::AVIF_RANGE_FULL) {
return gfx::ColorSpace::CreateJpeg();
}
return gfx::ColorSpace::CreateREC709();
}
// Builds a gfx::ColorSpace from the ITU-T H.273 (CICP) color description in the
// image.
gfx::ColorSpace GetColorSpace(const crabbyavif::avifImage* image) {
const bool grayscale =
image->yuvFormat == crabbyavif::AVIF_PIXEL_FORMAT_YUV400;
return GetColorSpace(image->colorPrimaries, image->transferCharacteristics,
image->matrixCoefficients, image->yuvRange, grayscale);
}
// |y_size| is the width or height of the Y plane. Returns the width or height
// of the U and V planes. |chroma_shift| represents the subsampling of the
// chroma (U and V) planes in the x (for width) or y (for height) direction.
int UVSize(int y_size, int chroma_shift) {
DCHECK(chroma_shift == 0 || chroma_shift == 1);
return (y_size + chroma_shift) >> chroma_shift;
}
float FractionToFloat(auto numerator, uint32_t denominator) {
// First cast to double and not float because uint32_t->float conversion can
// cause precision loss.
return static_cast<double>(numerator) / denominator;
}
// If the image has a gain map, returns the alternate image's color space, if
// it's different from the base image's and can be converted to a SkColorSpace.
// If the alternate image color space is the same as the base image, there is no
// need to specify it in SkGainmapInfo, and using the base image's color space
// may be more accurate if the profile cannot be exactly represented as a
// SkColorSpace object.
sk_sp<SkColorSpace> GetAltImageColorSpace(const crabbyavif::avifImage& image) {
const crabbyavif::avifGainMap* gain_map = image.gainMap;
if (!gain_map) {
return nullptr;
}
sk_sp<SkColorSpace> color_space;
if (gain_map->altICC.size) {
if (image.icc.size == gain_map->altICC.size &&
memcmp(gain_map->altICC.data, image.icc.data, gain_map->altICC.size) ==
0) {
// Same ICC as the base image, no need to specify it.
return nullptr;
}
std::unique_ptr<ColorProfile> profile = ColorProfile::Create(
base::span(gain_map->altICC.data, gain_map->altICC.size));
if (!profile) {
DVLOG(1) << "Failed to parse gain map ICC profile";
return nullptr;
}
const skcms_ICCProfile* icc_profile = profile->GetProfile();
if (icc_profile->has_CICP) {
color_space =
skia::CICPGetSkColorSpace(icc_profile->CICP.color_primaries,
icc_profile->CICP.transfer_characteristics,
icc_profile->CICP.matrix_coefficients,
icc_profile->CICP.video_full_range_flag,
/*prefer_srgb_trfn=*/true);
} else if (icc_profile->has_toXYZD50) {
// The transfer function is irrelevant for gain map tone mapping,
// set it to something standard in case it's not set or not
// supported.
skcms_ICCProfile with_srgb = *icc_profile;
skcms_SetTransferFunction(&with_srgb, skcms_sRGB_TransferFunction());
color_space = SkColorSpace::Make(with_srgb);
}
} else if (gain_map->altColorPrimaries !=
crabbyavif::AVIF_COLOR_PRIMARIES_UNSPECIFIED) {
if (image.icc.size == 0 &&
image.colorPrimaries == gain_map->altColorPrimaries) {
// Same as base image, no need to specify it.
return nullptr;
}
const bool grayscale = (gain_map->altPlaneCount == 1);
const gfx::ColorSpace alt_color_space = GetColorSpace(
gain_map->altColorPrimaries, gain_map->altTransferCharacteristics,
gain_map->altMatrixCoefficients, gain_map->altYUVRange, grayscale);
color_space = alt_color_space.GetAsFullRangeRGB().ToSkColorSpace();
}
if (!color_space) {
DVLOG(1) << "Gain map image contains an unsupported color space";
}
return color_space;
}
} // namespace
CrabbyAVIFImageDecoder::CrabbyAVIFImageDecoder(
AlphaOption alpha_option,
HighBitDepthDecodingOption hbd_option,
ColorBehavior color_behavior,
cc::AuxImage aux_image,
wtf_size_t max_decoded_bytes,
AnimationOption animation_option)
: ImageDecoder(alpha_option,
hbd_option,
color_behavior,
aux_image,
max_decoded_bytes),
animation_option_(animation_option) {}
CrabbyAVIFImageDecoder::~CrabbyAVIFImageDecoder() = default;
String CrabbyAVIFImageDecoder::FilenameExtension() const {
return "avif";
}
const AtomicString& CrabbyAVIFImageDecoder::MimeType() const {
DEFINE_STATIC_LOCAL(const AtomicString, avif_mime_type, ("image/avif"));
return avif_mime_type;
}
bool CrabbyAVIFImageDecoder::ImageIsHighBitDepth() {
return bit_depth_ > 8;
}
void CrabbyAVIFImageDecoder::OnSetData(scoped_refptr<SegmentReader> data) {
have_parsed_current_data_ = false;
const bool all_data_received = IsAllDataReceived();
avif_io_data_.reader = data_;
avif_io_data_.all_data_received = all_data_received;
avif_io_.sizeHint = all_data_received ? data_->size() : kMaxAvifFileSize;
// ImageFrameGenerator::GetYUVAInfo() and ImageFrameGenerator::DecodeToYUV()
// assume that allow_decode_to_yuv_ and other image metadata are available
// after calling ImageDecoder::Create() with data_complete=true.
if (all_data_received) {
ParseMetadata();
}
}
cc::YUVSubsampling CrabbyAVIFImageDecoder::GetYUVSubsampling() const {
switch (avif_yuv_format_) {
case crabbyavif::AVIF_PIXEL_FORMAT_YUV420:
return cc::YUVSubsampling::k420;
case crabbyavif::AVIF_PIXEL_FORMAT_YUV422:
return cc::YUVSubsampling::k422;
case crabbyavif::AVIF_PIXEL_FORMAT_YUV444:
return cc::YUVSubsampling::k444;
case crabbyavif::AVIF_PIXEL_FORMAT_YUV400:
return cc::YUVSubsampling::kUnknown;
case crabbyavif::AVIF_PIXEL_FORMAT_NONE:
// avif_yuv_format_ is initialized to crabbyavif::AVIF_PIXEL_FORMAT_NONE
// in the constructor. If we have called SetSize() successfully at the end
// of UpdateDemuxer(), avif_yuv_format_ cannot possibly be
// crabbyavif::AVIF_PIXEL_FORMAT_NONE.
CHECK(!IsDecodedSizeAvailable());
return cc::YUVSubsampling::kUnknown;
default:
break;
}
NOTREACHED() << "Invalid YUV format: " << avif_yuv_format_;
}
gfx::Size CrabbyAVIFImageDecoder::DecodedYUVSize(cc::YUVIndex index) const {
DCHECK(IsDecodedSizeAvailable());
if (index == cc::YUVIndex::kU || index == cc::YUVIndex::kV) {
return gfx::Size(UVSize(Size().width(), chroma_shift_x_),
UVSize(Size().height(), chroma_shift_y_));
}
return Size();
}
wtf_size_t CrabbyAVIFImageDecoder::DecodedYUVWidthBytes(
cc::YUVIndex index) const {
DCHECK(IsDecodedSizeAvailable());
// Try to return the same width bytes as used by the dav1d library. This will
// allow DecodeToYUV() to copy each plane with a single memcpy() call.
//
// The comments for Dav1dPicAllocator in dav1d/picture.h require the pixel
// width be padded to a multiple of 128 pixels.
wtf_size_t aligned_width = static_cast<wtf_size_t>(
base::bits::AlignUpDeprecatedDoNotUse(Size().width(), 128));
if (index == cc::YUVIndex::kU || index == cc::YUVIndex::kV) {
aligned_width >>= chroma_shift_x_;
}
// When the stride is a multiple of 1024, dav1d_default_picture_alloc()
// slightly pads the stride to avoid a reduction in cache hit rate in most
// L1/L2 cache implementations. Match that trick here. (Note that this padding
// is not documented in dav1d/picture.h.)
if ((aligned_width & 1023) == 0) {
aligned_width += 64;
}
// High bit depth YUV is stored as a uint16_t, double the number of bytes.
if (bit_depth_ > 8) {
DCHECK_LE(bit_depth_, 16);
aligned_width *= 2;
}
return aligned_width;
}
SkYUVColorSpace CrabbyAVIFImageDecoder::GetYUVColorSpace() const {
DCHECK(CanDecodeToYUV());
DCHECK_NE(yuv_color_space_, SkYUVColorSpace::kIdentity_SkYUVColorSpace);
return yuv_color_space_;
}
uint8_t CrabbyAVIFImageDecoder::GetYUVBitDepth() const {
DCHECK(CanDecodeToYUV());
return bit_depth_;
}
std::optional<gfx::HDRMetadata> CrabbyAVIFImageDecoder::GetHDRMetadata() const {
return hdr_metadata_;
}
void CrabbyAVIFImageDecoder::DecodeToYUV() {
DCHECK(image_planes_);
DCHECK(CanDecodeToYUV());
if (Failed()) {
return;
}
DCHECK(decoder_);
DCHECK_EQ(decoded_frame_count_, 1u); // Not animation.
// If the image is decoded progressively, just render the highest progressive
// frame in image_planes_ because the callers of DecodeToYUV() assume that a
// complete scan will not be updated.
const int frame_index = progressive_ ? (decoder_->imageCount - 1) : 0;
// TODO(crbug.com/943519): Implement YUV incremental decoding as in Decode().
decoder_->allowIncremental = crabbyavif::CRABBY_AVIF_FALSE;
// libavif cannot decode to an external buffer. So we need to copy from
// libavif's internal buffer to |image_planes_|.
// TODO(crbug.com/1099825): Enhance libavif to decode to an external buffer.
auto ret = DecodeImage(frame_index);
if (ret != crabbyavif::AVIF_RESULT_OK) {
if (ret != crabbyavif::AVIF_RESULT_WAITING_ON_IO) {
SetFailed();
}
return;
}
const crabbyavif::avifImage* image = decoded_image_;
DCHECK(!image->alphaPlane);
static_assert(
cc::YUVIndex::kY == static_cast<cc::YUVIndex>(crabbyavif::AVIF_CHAN_Y),
"");
static_assert(
cc::YUVIndex::kU == static_cast<cc::YUVIndex>(crabbyavif::AVIF_CHAN_U),
"");
static_assert(
cc::YUVIndex::kV == static_cast<cc::YUVIndex>(crabbyavif::AVIF_CHAN_V),
"");
// Disable subnormal floats which can occur when converting to half float.
std::unique_ptr<cc::ScopedSubnormalFloatDisabler> disable_subnormals;
const bool is_f16 = image_planes_->color_type() == kA16_float_SkColorType;
if (is_f16) {
disable_subnormals = std::make_unique<cc::ScopedSubnormalFloatDisabler>();
}
const float kHighBitDepthMultiplier =
(is_f16 ? 1.0f : 65535.0f) / ((1 << bit_depth_) - 1);
// Initialize |width| and |height| to the width and height of the luma plane.
uint32_t width = image->width;
uint32_t height = image->height;
for (wtf_size_t plane_index = 0; plane_index < cc::kNumYUVPlanes;
++plane_index) {
const cc::YUVIndex plane = static_cast<cc::YUVIndex>(plane_index);
const wtf_size_t src_row_bytes =
base::strict_cast<wtf_size_t>(image->yuvRowBytes[plane_index]);
const wtf_size_t dst_row_bytes = image_planes_->RowBytes(plane);
if (bit_depth_ == 8) {
DCHECK_EQ(image_planes_->color_type(), kGray_8_SkColorType);
const uint8_t* src = image->yuvPlanes[plane_index];
uint8_t* dst = static_cast<uint8_t*>(image_planes_->Plane(plane));
libyuv::CopyPlane(src, src_row_bytes, dst, dst_row_bytes, width, height);
} else {
DCHECK_GT(bit_depth_, 8u);
DCHECK_LE(bit_depth_, 16u);
const uint16_t* src =
reinterpret_cast<uint16_t*>(image->yuvPlanes[plane_index]);
uint16_t* dst = static_cast<uint16_t*>(image_planes_->Plane(plane));
if (image_planes_->color_type() == kA16_unorm_SkColorType) {
const wtf_size_t src_stride = src_row_bytes / 2;
const wtf_size_t dst_stride = dst_row_bytes / 2;
for (uint32_t j = 0; j < height; ++j) {
for (uint32_t i = 0; i < width; ++i) {
dst[j * dst_stride + i] =
src[j * src_stride + i] * kHighBitDepthMultiplier + 0.5f;
}
}
} else if (image_planes_->color_type() == kA16_float_SkColorType) {
// Note: Unlike CopyPlane_16, HalfFloatPlane wants the stride in bytes.
libyuv::HalfFloatPlane(src, src_row_bytes, dst, dst_row_bytes,
kHighBitDepthMultiplier, width, height);
} else {
NOTREACHED() << "Unsupported color type: "
<< static_cast<int>(image_planes_->color_type());
}
}
if (plane == cc::YUVIndex::kY) {
// Having processed the luma plane, change |width| and |height| to the
// width and height of the chroma planes.
width = UVSize(width, chroma_shift_x_);
height = UVSize(height, chroma_shift_y_);
}
}
image_planes_->SetHasCompleteScan();
}
int CrabbyAVIFImageDecoder::RepetitionCount() const {
if (decoded_frame_count_ > 1) {
switch (decoder_->repetitionCount) {
case crabbyavif::CRABBY_AVIF_REPETITION_COUNT_INFINITE:
return kAnimationLoopInfinite;
case crabbyavif::CRABBY_AVIF_REPETITION_COUNT_UNKNOWN:
// The AVIF file does not have repetitions specified using an EditList
// box. Loop infinitely for backward compatibility with older versions
// of Chrome.
return kAnimationLoopInfinite;
default:
return decoder_->repetitionCount;
}
}
return kAnimationNone;
}
bool CrabbyAVIFImageDecoder::FrameIsReceivedAtIndex(wtf_size_t index) const {
if (!IsDecodedSizeAvailable()) {
return false;
}
if (decoded_frame_count_ == 1) {
return ImageDecoder::FrameIsReceivedAtIndex(index);
}
if (index >= frame_buffer_cache_.size()) {
return false;
}
if (IsAllDataReceived()) {
return true;
}
crabbyavif::avifExtent data_extent;
if (crabbyavif::crabby_avifDecoderNthImageMaxExtent(
decoder_.get(), index, &data_extent) != crabbyavif::AVIF_RESULT_OK) {
return false;
}
return data_extent.size == 0 ||
data_extent.offset + data_extent.size <= data_->size();
}
std::optional<base::TimeDelta> CrabbyAVIFImageDecoder::FrameTimestampAtIndex(
wtf_size_t index) const {
return index < frame_buffer_cache_.size()
? frame_buffer_cache_[index].Timestamp()
: std::nullopt;
}
base::TimeDelta CrabbyAVIFImageDecoder::FrameDurationAtIndex(
wtf_size_t index) const {
return index < frame_buffer_cache_.size()
? frame_buffer_cache_[index].Duration()
: base::TimeDelta();
}
bool CrabbyAVIFImageDecoder::ImageHasBothStillAndAnimatedSubImages() const {
// Per MIAF, all animated AVIF files must have a still image, even if it's
// just a pointer to the first frame of the animation.
return decoder_ && decoder_->imageSequenceTrackPresent;
}
// static
bool CrabbyAVIFImageDecoder::MatchesAVIFSignature(
const FastSharedBufferReader& fast_reader) {
// crabbyavif::crabby_avifPeekCompatibleFileType() clamps compatible brands at
// 32 when reading in the ftyp box in ISO BMFF for the 'avif' or 'avis' brand.
// So the maximum number of bytes read is 144 bytes (size 4 bytes, type 4
// bytes, major brand 4 bytes, minor version 4 bytes, and 4 bytes * 32
// compatible brands).
char buffer[144];
crabbyavif::avifROData input;
input.size = std::min(sizeof(buffer), fast_reader.size());
input.data = reinterpret_cast<const uint8_t*>(
fast_reader.GetConsecutiveData(0, input.size, buffer));
return crabbyavif::crabby_avifPeekCompatibleFileType(&input);
}
gfx::ColorSpace CrabbyAVIFImageDecoder::GetColorSpaceForTesting() const {
const auto* image = GetDecoderImage();
CHECK(image);
return GetColorSpace(image);
}
void CrabbyAVIFImageDecoder::ParseMetadata() {
if (!UpdateDemuxer()) {
SetFailed();
}
}
void CrabbyAVIFImageDecoder::DecodeSize() {
ParseMetadata();
}
wtf_size_t CrabbyAVIFImageDecoder::DecodeFrameCount() {
if (!Failed()) {
ParseMetadata();
}
return IsDecodedSizeAvailable() ? decoded_frame_count_
: frame_buffer_cache_.size();
}
void CrabbyAVIFImageDecoder::InitializeNewFrame(wtf_size_t index) {
auto& buffer = frame_buffer_cache_[index];
if (decode_to_half_float_) {
buffer.SetPixelFormat(ImageFrame::PixelFormat::kRGBA_F16);
}
// For AVIFs, the frame always fills the entire image.
buffer.SetOriginalFrameRect(gfx::Rect(Size()));
crabbyavif::avifImageTiming timing;
auto ret = crabbyavif::crabby_avifDecoderNthImageTiming(decoder_.get(), index,
&timing);
DCHECK_EQ(ret, crabbyavif::AVIF_RESULT_OK);
buffer.SetTimestamp(base::Seconds(timing.pts));
buffer.SetDuration(base::Seconds(timing.duration));
}
void CrabbyAVIFImageDecoder::Decode(wtf_size_t index) {
if (Failed()) {
return;
}
UpdateAggressivePurging(index);
int frame_index = index;
// If the image is decoded progressively, find the highest progressive
// frame that we have received and decode from that frame index. Internally
// decoder_ still decodes the lower progressive frames, but they are only used
// as reference frames and not rendered.
if (progressive_) {
DCHECK_EQ(index, 0u);
// decoder_->imageIndex is the current image index. decoder_->imageIndex is
// initialized to -1. decoder_->imageIndex + 1 is the next image index.
DCHECK_LT(decoder_->imageIndex + 1, decoder_->imageCount);
for (frame_index = decoder_->imageIndex + 1;
frame_index + 1 < decoder_->imageCount; ++frame_index) {
crabbyavif::avifExtent data_extent;
auto rv = crabbyavif::crabby_avifDecoderNthImageMaxExtent(
decoder_.get(), frame_index + 1, &data_extent);
if (rv != crabbyavif::AVIF_RESULT_OK) {
DVLOG(1) << "crabbyavif::crabby_avifDecoderNthImageMaxExtent("
<< frame_index + 1
<< ") failed: " << crabbyavif::crabby_avifResultToString(rv)
<< ": " << AvifDecoderErrorMessage(decoder_.get());
SetFailed();
return;
}
if (data_extent.size != 0 &&
data_extent.offset + data_extent.size > data_->size()) {
break;
}
}
}
// Allow AVIF frames to be partially decoded before all data is received.
// Only enabled for non-progressive still images because animations look
// better without incremental decoding and because progressive decoding makes
// incremental decoding unnecessary.
decoder_->allowIncremental = (decoder_->imageCount == 1);
auto ret = DecodeImage(frame_index);
if (ret != crabbyavif::AVIF_RESULT_OK &&
ret != crabbyavif::AVIF_RESULT_WAITING_ON_IO) {
SetFailed();
return;
}
const crabbyavif::avifImage* image = decoded_image_;
// ImageDecoder::SizeCalculationMayOverflow(), called by UpdateDemuxer()
// before being here, made sure the image height fits in an int.
int displayable_height = static_cast<int>(
crabbyavif::crabby_avifDecoderDecodedRowCount(decoder_.get()));
if (image == cropped_image_.get()) {
displayable_height -= clap_origin_.y();
displayable_height =
std::clamp(displayable_height, 0, static_cast<int>(image->height));
}
if (displayable_height == 0) {
return; // There is nothing to display.
}
ImageFrame& buffer = frame_buffer_cache_[index];
DCHECK_NE(buffer.GetStatus(), ImageFrame::kFrameComplete);
if (buffer.GetStatus() == ImageFrame::kFrameEmpty) {
if (!InitFrameBuffer(index)) {
DVLOG(1) << "Failed to create frame buffer...";
SetFailed();
return;
}
DCHECK_EQ(buffer.GetStatus(), ImageFrame::kFramePartial);
// The buffer is transparent outside the decoded area while the image is
// loading. The correct alpha value for the frame will be set when it is
// fully decoded.
buffer.SetHasAlpha(true);
if (decoder_->allowIncremental) {
// In case of buffer disposal after decoding.
incrementally_displayed_height_ = 0;
}
}
const int last_displayed_height =
decoder_->allowIncremental ? incrementally_displayed_height_ : 0;
if (displayable_height == last_displayed_height) {
return; // There is no new row to display.
}
DCHECK_GT(displayable_height, last_displayed_height);
// Only render the newly decoded rows.
if (!RenderImage(image, last_displayed_height, &displayable_height,
&buffer)) {
SetFailed();
return;
}
if (displayable_height == last_displayed_height) {
return; // There is no new row to display.
}
DCHECK_GT(displayable_height, last_displayed_height);
ColorCorrectImage(last_displayed_height, displayable_height, &buffer);
buffer.SetPixelsChanged(true);
if (decoder_->allowIncremental) {
incrementally_displayed_height_ = displayable_height;
}
if (static_cast<uint32_t>(displayable_height) == image->height &&
(!progressive_ || frame_index + 1 == decoder_->imageCount)) {
buffer.SetHasAlpha(!!image->alphaPlane);
buffer.SetStatus(ImageFrame::kFrameComplete);
PostDecodeProcessing(index);
}
}
bool CrabbyAVIFImageDecoder::CanReusePreviousFrameBuffer(
wtf_size_t index) const {
// (a) Technically we can reuse the bitmap of the previous frame because the
// AVIF decoder handles frame dependence internally and we never need to
// preserve previous frames to decode later ones, and (b) since this function
// will not currently be called, this is really more for the reader than any
// functional purpose.
return true;
}
// static
crabbyavif::avifResult CrabbyAVIFImageDecoder::ReadFromSegmentReader(
crabbyavif::avifIO* io,
uint32_t read_flags,
uint64_t offset,
size_t size,
crabbyavif::avifROData* out) {
if (read_flags != 0) {
// Unsupported read_flags
return crabbyavif::AVIF_RESULT_IO_ERROR;
}
AvifIOData* io_data = static_cast<AvifIOData*>(io->data);
// Sanitize/clamp incoming request
if (offset > io_data->reader->size()) {
// The offset is past the end of the buffer or available data.
return io_data->all_data_received ? crabbyavif::AVIF_RESULT_IO_ERROR
: crabbyavif::AVIF_RESULT_WAITING_ON_IO;
}
// It is more convenient to work with a variable of the size_t type. Since
// offset <= io_data->reader->size() <= SIZE_MAX, this cast is safe.
size_t position = static_cast<size_t>(offset);
const size_t available_size = io_data->reader->size() - position;
if (size > available_size) {
if (!io_data->all_data_received) {
return crabbyavif::AVIF_RESULT_WAITING_ON_IO;
}
size = available_size;
}
out->size = size;
base::span<const uint8_t> data = io_data->reader->GetSomeData(position);
if (data.size() >= size) {
out->data = data.data();
return crabbyavif::AVIF_RESULT_OK;
}
io_data->buffer.clear();
io_data->buffer.reserve(size);
while (size != 0) {
data = io_data->reader->GetSomeData(position);
size_t copy_size = std::min(data.size(), size);
io_data->buffer.insert(io_data->buffer.end(), data.begin(), data.end());
position += copy_size;
size -= copy_size;
}
out->data = io_data->buffer.data();
return crabbyavif::AVIF_RESULT_OK;
}
bool CrabbyAVIFImageDecoder::UpdateDemuxer() {
DCHECK(!Failed());
if (IsDecodedSizeAvailable()) {
return true;
}
if (have_parsed_current_data_) {
return true;
}
have_parsed_current_data_ = true;
if (!decoder_) {
decoder_.reset(crabbyavif::crabby_avifDecoderCreate());
if (!decoder_) {
return false;
}
// For simplicity, use a hardcoded maxThreads of 2, independent of the image
// size and processor count. Note: even if we want maxThreads to depend on
// the image size, it is impossible to do so because maxThreads is passed to
// dav1d_open() inside crabbyavif::crabby_avifDecoderParse(), but the image
// size is not known until crabbyavif::crabby_avifDecoderParse() returns
// successfully. See https://github.com/AOMediaCodec/libavif/issues/636.
decoder_->maxThreads = 2;
if (animation_option_ != AnimationOption::kUnspecified &&
crabbyavif::crabby_avifDecoderSetSource(
decoder_.get(),
animation_option_ == AnimationOption::kPreferAnimation
? crabbyavif::AVIF_DECODER_SOURCE_TRACKS
: crabbyavif::AVIF_DECODER_SOURCE_PRIMARY_ITEM) !=
crabbyavif::AVIF_RESULT_OK) {
return false;
}
// Chrome doesn't use XMP and Exif metadata. Ignoring XMP and Exif will
// ensure crabbyavif::crabby_avifDecoderParse() isn't waiting for some tiny
// Exif payload hiding at the end of a file.
decoder_->ignoreXMP = crabbyavif::CRABBY_AVIF_TRUE;
decoder_->ignoreExif = crabbyavif::CRABBY_AVIF_TRUE;
// Turn off libavif's 'clap' (clean aperture) property validation. We
// validate 'clap' ourselves and ignore invalid 'clap' properties.
decoder_->strictFlags &= ~crabbyavif::AVIF_STRICT_CLAP_VALID;
// Allow the PixelInformationProperty ('pixi') to be missing in AV1 image
// items. libheif v1.11.0 or older does not add the 'pixi' item property to
// AV1 image items. (This issue has been corrected in libheif v1.12.0.) See
// crbug.com/1198455.
decoder_->strictFlags &= ~crabbyavif::AVIF_STRICT_PIXI_REQUIRED;
if (aux_image_ == cc::AuxImage::kGainmap) {
decoder_->imageContentToDecode = crabbyavif::AVIF_IMAGE_CONTENT_GAIN_MAP;
}
avif_io_.destroy = nullptr;
avif_io_.read = ReadFromSegmentReader;
avif_io_.write = nullptr;
avif_io_.persistent = crabbyavif::CRABBY_AVIF_FALSE;
avif_io_.data = &avif_io_data_;
crabbyavif::crabby_avifDecoderSetIO(decoder_.get(), &avif_io_);
}
// If all data is received, there is no point in decoding progressively.
decoder_->allowProgressive = !IsAllDataReceived();
auto ret = crabbyavif::crabby_avifDecoderParse(decoder_.get());
if (ret == crabbyavif::AVIF_RESULT_WAITING_ON_IO) {
return true;
}
if (ret != crabbyavif::AVIF_RESULT_OK) {
DVLOG(1) << "crabbyavif::crabby_avifDecoderParse failed: "
<< crabbyavif::crabby_avifResultToString(ret) << ". "
<< decoder_->diag.error;
return false;
}
// Image metadata is available in decoder_->image after
// crabbyavif::crabby_avifDecoderParse() even though decoder_->imageIndex is
// invalid (-1).
DCHECK_EQ(decoder_->imageIndex, -1);
// This variable is named |container| to emphasize the fact that the current
// contents of decoder_->image come from the container, not any frame.
const auto* container = GetDecoderImage();
if (!container) {
return false;
}
// The container width and container height are read from either the tkhd
// (track header) box of a track or the ispe (image spatial extents) property
// of an image item, both of which are mandatory in the spec.
if (container->width == 0 || container->height == 0) {
DVLOG(1) << "Container width and height must be present";
return false;
}
// The container depth is read from either the av1C box of a track or the av1C
// property of an image item, both of which are mandatory in the spec.
if (container->depth == 0) {
DVLOG(1) << "Container depth must be present";
return false;
}
DCHECK_GT(decoder_->imageCount, 0);
progressive_ =
decoder_->progressiveState == crabbyavif::AVIF_PROGRESSIVE_STATE_ACTIVE;
// If the image is progressive, decoder_->imageCount is the number of
// progressive frames, but there is only one still image.
decoded_frame_count_ = progressive_ ? 1 : decoder_->imageCount;
container_width_ = container->width;
container_height_ = container->height;
bit_depth_ = container->depth;
decode_to_half_float_ =
ImageIsHighBitDepth() &&
high_bit_depth_decoding_option_ == kHighBitDepthToHalfFloat;
// Verify that crabbyavif::AVIF_PIXEL_FORMAT_{YUV444,YUV422,YUV420,YUV400} are
// consecutive.
static_assert(crabbyavif::AVIF_PIXEL_FORMAT_YUV422 ==
crabbyavif::AVIF_PIXEL_FORMAT_YUV444 + 1);
static_assert(crabbyavif::AVIF_PIXEL_FORMAT_YUV420 ==
crabbyavif::AVIF_PIXEL_FORMAT_YUV422 + 1);
static_assert(crabbyavif::AVIF_PIXEL_FORMAT_YUV400 ==
crabbyavif::AVIF_PIXEL_FORMAT_YUV420 + 1);
// Assert that after crabbyavif::crabby_avifDecoderParse() returns
// crabbyavif::AVIF_RESULT_OK, decoder_->image->yuvFormat (the same as
// container->yuvFormat) is one of the four YUV formats in AV1.
CHECK(container->yuvFormat >= crabbyavif::AVIF_PIXEL_FORMAT_YUV444 &&
container->yuvFormat <= crabbyavif::AVIF_PIXEL_FORMAT_YUV400)
<< "Invalid YUV format: " << container->yuvFormat;
avif_yuv_format_ = container->yuvFormat;
crabbyavif::avifPixelFormatInfo format_info;
crabbyavif::crabby_avifGetPixelFormatInfo(container->yuvFormat, &format_info);
chroma_shift_x_ = format_info.chromaShiftX;
chroma_shift_y_ = format_info.chromaShiftY;
if (container->clli.maxCLL || container->clli.maxPALL) {
hdr_metadata_ = gfx::HDRMetadata();
hdr_metadata_->cta_861_3 = gfx::HdrMetadataCta861_3(
container->clli.maxCLL, container->clli.maxPALL);
}
// SetEmbeddedColorProfile() must be called before IsSizeAvailable() becomes
// true. So call SetEmbeddedColorProfile() before calling SetSize(). The color
// profile is either an ICC profile or the CICP color description.
if (!IgnoresColorSpace()) {
// The CICP color description is always present because we can always get it
// from the AV1 sequence header for the frames. If an ICC profile is
// present, use it instead of the CICP color description.
if (container->icc.size) {
std::unique_ptr<ColorProfile> profile = ColorProfile::Create(
base::span(container->icc.data, container->icc.size));
if (!profile) {
DVLOG(1) << "Failed to parse image ICC profile";
return false;
}
uint32_t data_color_space = profile->GetProfile()->data_color_space;
const bool is_mono =
container->yuvFormat == crabbyavif::AVIF_PIXEL_FORMAT_YUV400;
if (is_mono) {
if (data_color_space != skcms_Signature_Gray &&
data_color_space != skcms_Signature_RGB) {
profile = nullptr;
}
} else {
if (data_color_space != skcms_Signature_RGB) {
profile = nullptr;
}
}
if (!profile) {
DVLOG(1)
<< "Image contains ICC profile that does not match its color space";
return false;
}
SetEmbeddedColorProfile(std::move(profile));
} else if (container->colorPrimaries !=
crabbyavif::AVIF_COLOR_PRIMARIES_UNSPECIFIED ||
container->transferCharacteristics !=
crabbyavif::AVIF_TRANSFER_CHARACTERISTICS_UNSPECIFIED) {
gfx::ColorSpace frame_cs = GetColorSpace(container);
sk_sp<SkColorSpace> sk_color_space =
frame_cs.GetAsFullRangeRGB().ToSkColorSpace();
if (!sk_color_space) {
DVLOG(1) << "Image contains an unsupported color space";
return false;
}
skcms_ICCProfile profile;
sk_color_space->toProfile(&profile);
SetEmbeddedColorProfile(std::make_unique<ColorProfile>(profile));
}
}
// |angle| * 90 specifies the angle of anti-clockwise rotation in degrees.
// Legal values: [0-3].
int angle = 0;
if (container->transformFlags & crabbyavif::AVIF_TRANSFORM_IROT) {
angle = container->irot.angle;
CHECK_LT(angle, 4);
}
// |axis| specifies how the mirroring is performed.
// -1: No mirroring.
// 0: The top and bottom parts of the image are exchanged.
// 1: The left and right parts of the image are exchanged.
int axis = -1;
if (container->transformFlags & crabbyavif::AVIF_TRANSFORM_IMIR) {
axis = container->imir.axis;
CHECK_LT(axis, 2);
}
// MIAF Section 7.3.6.7 (Clean aperture, rotation and mirror) says:
// These properties, if used, shall be indicated to be applied in the
// following order: clean aperture first, then rotation, then mirror.
//
// In the kAxisAngleToOrientation array, the first dimension is axis (with an
// offset of 1). The second dimension is angle.
constexpr std::array<std::array<ImageOrientationEnum, 4>, 3>
kAxisAngleToOrientation = {{
// No mirroring.
{ImageOrientationEnum::kOriginTopLeft,
ImageOrientationEnum::kOriginLeftBottom,
ImageOrientationEnum::kOriginBottomRight,
ImageOrientationEnum::kOriginRightTop},
// Top-to-bottom mirroring. Change Top<->Bottom in the first row.
{ImageOrientationEnum::kOriginBottomLeft,
ImageOrientationEnum::kOriginLeftTop,
ImageOrientationEnum::kOriginTopRight,
ImageOrientationEnum::kOriginRightBottom},
// Left-to-right mirroring. Change Left<->Right in the first row.
{ImageOrientationEnum::kOriginTopRight,
ImageOrientationEnum::kOriginRightBottom,
ImageOrientationEnum::kOriginBottomLeft,
ImageOrientationEnum::kOriginLeftTop},
}};
orientation_ = kAxisAngleToOrientation[axis + 1][angle];
// Determine whether the image can be decoded to YUV.
// * Alpha channel is not supported.
// * Multi-frame images (animations) are not supported. (The DecodeToYUV()
// method does not have an 'index' parameter.)
allow_decode_to_yuv_ =
avif_yuv_format_ != crabbyavif::AVIF_PIXEL_FORMAT_YUV400 &&
!decoder_->alphaPresent && decoded_frame_count_ == 1 &&
GetColorSpace(container).ToSkYUVColorSpace(container->depth,
&yuv_color_space_) &&
// TODO(crbug.com/911246): Support color space transforms for YUV decodes.
!ColorTransform();
// Record bpp information only for 8-bit, color, still images that do not have
// alpha.
if (container->depth == 8 &&
avif_yuv_format_ != crabbyavif::AVIF_PIXEL_FORMAT_YUV400 &&
!decoder_->alphaPresent && decoded_frame_count_ == 1) {
static constexpr char kType[] = "Avif";
update_bpp_histogram_callback_ = base::BindOnce(&UpdateBppHistogram<kType>);
}
unsigned width = container->width;
unsigned height = container->height;
// If the image is cropped, pass the size of the cropped image (the clean
// aperture) to SetSize().
if (container->transformFlags & crabbyavif::AVIF_TRANSFORM_CLAP) {
AVIFCleanApertureType clap_type;
crabbyavif::avifCropRect crop_rect;
crabbyavif::avifDiagnostics diag;
crabbyavif::avifBool valid_clap =
crabbyavif::crabby_avifCropRectConvertCleanApertureBox(
&crop_rect, &container->clap, container->width, container->height,
container->yuvFormat, &diag);
if (!valid_clap) {
DVLOG(1) << "Invalid 'clap' property: " << diag.error
<< "; showing the full image.";
clap_type = AVIFCleanApertureType::kInvalid;
ignore_clap_ = true;
} else if (crop_rect.x != 0 || crop_rect.y != 0) {
// To help discourage the creation of files with privacy risks, also
// consider 'clap' properties whose origins are not at (0, 0) as invalid.
// See https://github.com/AOMediaCodec/av1-avif/issues/188 and
// https://github.com/AOMediaCodec/av1-avif/issues/189.
DVLOG(1) << "Origin of 'clap' property anchored to (" << crop_rect.x
<< ", " << crop_rect.y << "); showing the full image.";
clap_type = AVIFCleanApertureType::kNonzeroOrigin;
ignore_clap_ = true;
} else {
clap_type = AVIFCleanApertureType::kZeroOrigin;
clap_origin_.SetPoint(crop_rect.x, crop_rect.y);
width = crop_rect.width;
height = crop_rect.height;
}
clap_type_ = clap_type;
}
return SetSize(width, height);
}
crabbyavif::avifResult CrabbyAVIFImageDecoder::DecodeImage(wtf_size_t index) {
const auto ret =
crabbyavif::crabby_avifDecoderNthImage(decoder_.get(), index);
// |index| should be less than what DecodeFrameCount() returns, so we should
// not get the crabbyavif::AVIF_RESULT_NO_IMAGES_REMAINING error.
DCHECK_NE(ret, crabbyavif::AVIF_RESULT_NO_IMAGES_REMAINING);
if (ret != crabbyavif::AVIF_RESULT_OK &&
ret != crabbyavif::AVIF_RESULT_WAITING_ON_IO) {
DVLOG(1) << "crabbyavif::crabby_avifDecoderNthImage(" << index
<< ") failed: " << crabbyavif::crabby_avifResultToString(ret)
<< ": " << AvifDecoderErrorMessage(decoder_.get());
return ret;
}
const auto* image = GetDecoderImage();
CHECK(image);
// Frame size must be equal to container size.
if (image->width != container_width_ || image->height != container_height_) {
DVLOG(1) << "Frame size " << image->width << "x" << image->height
<< " differs from container size " << container_width_ << "x"
<< container_height_;
return crabbyavif::AVIF_RESULT_UNKNOWN_ERROR;
}
// Frame bit depth must be equal to container bit depth.
if (image->depth != bit_depth_) {
DVLOG(1) << "Frame bit depth must be equal to container bit depth";
return crabbyavif::AVIF_RESULT_UNKNOWN_ERROR;
}
// Frame YUV format must be equal to container YUV format.
if (image->yuvFormat != avif_yuv_format_) {
DVLOG(1) << "Frame YUV format must be equal to container YUV format";
return crabbyavif::AVIF_RESULT_UNKNOWN_ERROR;
}
decoded_image_ = image;
if ((image->transformFlags & crabbyavif::AVIF_TRANSFORM_CLAP) &&
!ignore_clap_) {
CropDecodedImage();
}
if (ret == crabbyavif::AVIF_RESULT_OK) {
if (IsAllDataReceived() && update_bpp_histogram_callback_) {
std::move(update_bpp_histogram_callback_).Run(Size(), data_->size());
}
if (clap_type_.has_value()) {
base::UmaHistogramEnumeration("Blink.ImageDecoders.Avif.CleanAperture",
clap_type_.value());
clap_type_.reset();
}
}
return ret;
}
void CrabbyAVIFImageDecoder::CropDecodedImage() {
DCHECK_NE(decoded_image_, cropped_image_.get());
if (!cropped_image_) {
cropped_image_.reset(crabbyavif::crabby_avifImageCreateEmpty());
}
crabbyavif::avifCropRect rect;
rect.x = clap_origin_.x();
rect.y = clap_origin_.y();
rect.width = Size().width();
rect.height = Size().height();
const crabbyavif::avifResult result = crabbyavif::crabby_avifImageSetViewRect(
cropped_image_.get(), decoded_image_, &rect);
CHECK_EQ(result, crabbyavif::AVIF_RESULT_OK);
decoded_image_ = cropped_image_.get();
}
bool CrabbyAVIFImageDecoder::RenderImage(const crabbyavif::avifImage* image,
int from_row,
int* to_row,
ImageFrame* buffer) {
DCHECK_LT(from_row, *to_row);
// libavif uses libyuv for the YUV 4:2:0 to RGB upsampling and/or conversion
// as follows:
// - convert the top RGB row 0,
// - convert the RGB rows 1 and 2, then RGB rows 3 and 4 etc.,
// - convert the bottom (odd) RGB row if there is an even number of RGB rows.
//
// Unfortunately this cannot be applied incrementally as is. The RGB values
// would differ because the first and last RGB rows have a formula using only
// one UV row, while the other RGB rows use two UV rows as input each.
// See https://crbug.com/libyuv/934.
//
// The workaround is a backup of the last converted even RGB row, called top
// row, located right before |from_row|. The conversion is then called
// starting at this top row, overwriting it with invalid values. The remaining
// pairs of rows are correctly aligned and their freshly converted values are
// valid. Then the backed up row is put back, fixing the issue.
// The bottom row is postponed if the other half of the pair it belongs to is
// not yet decoded.
//
// UV rows | Y/RGB rows
// | all | first decoding | second decoding
// ____ 0 ____ 0 (from_row)
// 0 ---- ____ 1 ____ 1
// ____ 2 ____ 2 ____ 2 (backed up)
// 1 ---- ____ 3 ____ 3 (postponed) ____ 3 (from_row)
// ____ 4 4 (*to_row) ____ 4
// 2 ---- ____ 5 ____ 5
// 6 (*to_row)
const bool use_libyuv_bilinear_upsampling =
!decode_to_half_float_ &&
image->yuvFormat == crabbyavif::AVIF_PIXEL_FORMAT_YUV420;
const bool save_top_row = use_libyuv_bilinear_upsampling && from_row > 0;
const bool postpone_bottom_row =
use_libyuv_bilinear_upsampling &&
static_cast<uint32_t>(*to_row) < image->height;
if (postpone_bottom_row) {
// libavif outputs an even number of rows because 4:2:0 samples are decoded
// in pairs.
DCHECK(!(*to_row & 1));
--*to_row;
if (from_row == *to_row) {
return true; // Nothing to do.
}
}
if (save_top_row) {
// |from_row| is odd because it is equal to the output value of |*to_row|
// from the previous RenderImage() call, and |*to_row| was even and then
// decremented at that time.
DCHECK(from_row & 1);
--from_row;
}
// Focus |image| on rows [from_row, *to_row).
std::unique_ptr<crabbyavif::avifImage,
decltype(&crabbyavif::crabby_avifImageDestroy)>
view(nullptr, crabbyavif::crabby_avifImageDestroy);
if (from_row > 0 || static_cast<uint32_t>(*to_row) < image->height) {
const crabbyavif::avifCropRect rect = {
0, static_cast<uint32_t>(from_row), image->width,
static_cast<uint32_t>(*to_row - from_row)};
view.reset(crabbyavif::crabby_avifImageCreateEmpty());
const crabbyavif::avifResult result =
crabbyavif::crabby_avifImageSetViewRect(view.get(), image, &rect);
CHECK_EQ(result, crabbyavif::AVIF_RESULT_OK);
image = view.get();
}
crabbyavif::avifRGBImage rgb_image;
crabbyavif::crabby_avifRGBImageSetDefaults(&rgb_image, image);
if (decode_to_half_float_) {
rgb_image.depth = 16;
rgb_image.isFloat = crabbyavif::CRABBY_AVIF_TRUE;
rgb_image.pixels =
reinterpret_cast<uint8_t*>(buffer->GetAddrF16(0, from_row));
rgb_image.rowBytes = image->width * sizeof(uint64_t);
// When decoding to half float, the pixel ordering is always RGBA on all
// platforms.
rgb_image.format = crabbyavif::AVIF_RGB_FORMAT_RGBA;
} else {
rgb_image.depth = 8;
rgb_image.pixels = reinterpret_cast<uint8_t*>(buffer->GetAddr(0, from_row));
rgb_image.rowBytes = image->width * sizeof(uint32_t);
// When decoding to 8-bit, Android uses little-endian RGBA pixels. All other
// platforms use BGRA pixels.
static_assert(SK_B32_SHIFT == 16 - SK_R32_SHIFT);
static_assert(SK_G32_SHIFT == 8);
static_assert(SK_A32_SHIFT == 24);
#if SK_B32_SHIFT
rgb_image.format = crabbyavif::AVIF_RGB_FORMAT_RGBA;
#else
rgb_image.format = crabbyavif::AVIF_RGB_FORMAT_BGRA;
#endif
}
rgb_image.alphaPremultiplied = buffer->PremultiplyAlpha();
rgb_image.maxThreads = decoder_->maxThreads;
if (save_top_row) {
previous_last_decoded_row_.resize(rgb_image.rowBytes);
memcpy(previous_last_decoded_row_.data(), rgb_image.pixels,
rgb_image.rowBytes);
}
const crabbyavif::avifResult result =
crabbyavif::crabby_avifImageYUVToRGB(image, &rgb_image);
if (save_top_row) {
memcpy(rgb_image.pixels, previous_last_decoded_row_.data(),
rgb_image.rowBytes);
}
return result == crabbyavif::AVIF_RESULT_OK;
}
void CrabbyAVIFImageDecoder::ColorCorrectImage(int from_row,
int to_row,
ImageFrame* buffer) {
// Postprocess the image data according to the profile.
const ColorProfileTransform* const transform = ColorTransform();
if (!transform) {
return;
}
const auto alpha_format = (buffer->HasAlpha() && buffer->PremultiplyAlpha())
? skcms_AlphaFormat_PremulAsEncoded
: skcms_AlphaFormat_Unpremul;
if (decode_to_half_float_) {
const skcms_PixelFormat color_format = skcms_PixelFormat_RGBA_hhhh;
for (int y = from_row; y < to_row; ++y) {
ImageFrame::PixelDataF16* const row = buffer->GetAddrF16(0, y);
const bool success = skcms_Transform(
row, color_format, alpha_format, transform->SrcProfile(), row,
color_format, alpha_format, transform->DstProfile(), Size().width());
DCHECK(success);
}
} else {
const skcms_PixelFormat color_format = XformColorFormat();
for (int y = from_row; y < to_row; ++y) {
ImageFrame::PixelData* const row = buffer->GetAddr(0, y);
const bool success = skcms_Transform(
row, color_format, alpha_format, transform->SrcProfile(), row,
color_format, alpha_format, transform->DstProfile(), Size().width());
DCHECK(success);
}
}
}
bool CrabbyAVIFImageDecoder::GetGainmapInfoAndData(
SkGainmapInfo& out_gainmap_info,
scoped_refptr<SegmentReader>& out_gainmap_data) const {
// Ensure that parsing succeeded.
if (!IsDecodedSizeAvailable()) {
return false;
}
if (!decoder_->image->gainMap) {
return false;
}
const crabbyavif::avifGainMap& gain_map = *decoder_->image->gainMap;
if (gain_map.baseHdrHeadroom.d == 0 || gain_map.alternateHdrHeadroom.d == 0) {
DVLOG(1) << "Invalid gainmap metadata: a denominator value is zero";
return false;
}
const float base_headroom = std::exp2(
FractionToFloat(gain_map.baseHdrHeadroom.n, gain_map.baseHdrHeadroom.d));
const float alternate_headroom = std::exp2(FractionToFloat(
gain_map.alternateHdrHeadroom.n, gain_map.alternateHdrHeadroom.d));
const bool base_is_hdr = base_headroom > alternate_headroom;
out_gainmap_info.fDisplayRatioSdr =
base_is_hdr ? alternate_headroom : base_headroom;
out_gainmap_info.fDisplayRatioHdr =
base_is_hdr ? base_headroom : alternate_headroom;
out_gainmap_info.fBaseImageType = base_is_hdr
? SkGainmapInfo::BaseImageType::kHDR
: SkGainmapInfo::BaseImageType::kSDR;
if (!gain_map.useBaseColorSpace) {
// Try to use the alternate image's color space.
out_gainmap_info.fGainmapMathColorSpace =
GetAltImageColorSpace(*decoder_->image);
}
for (int i = 0; i < 3; ++i) {
if (gain_map.gainMapMin[i].d == 0 || gain_map.gainMapMax[i].d == 0 ||
gain_map.gainMapGamma[i].d == 0 || gain_map.baseOffset[i].d == 0 ||
gain_map.alternateOffset[i].d == 0) {
DVLOG(1) << "Invalid gainmap metadata: a denominator value is zero";
return false;
}
if (gain_map.gainMapGamma[i].n == 0) {
DVLOG(1) << "Invalid gainmap metadata: gamma is zero";
return false;
}
const float min_log2 =
FractionToFloat(gain_map.gainMapMin[i].n, gain_map.gainMapMin[i].d);
const float max_log2 =
FractionToFloat(gain_map.gainMapMax[i].n, gain_map.gainMapMax[i].d);
out_gainmap_info.fGainmapRatioMin[i] = std::exp2(min_log2);
out_gainmap_info.fGainmapRatioMax[i] = std::exp2(max_log2);
// Numerator and denominator intentionally swapped to get 1.0/gamma.
out_gainmap_info.fGainmapGamma[i] =
FractionToFloat(gain_map.gainMapGamma[i].d, gain_map.gainMapGamma[i].n);
const float base_offset =
FractionToFloat(gain_map.baseOffset[i].n, gain_map.baseOffset[i].d);
const float alternate_offset = FractionToFloat(
gain_map.alternateOffset[i].n, gain_map.alternateOffset[i].d);
out_gainmap_info.fEpsilonSdr[i] =
base_is_hdr ? alternate_offset : base_offset;
out_gainmap_info.fEpsilonHdr[i] =
base_is_hdr ? base_offset : alternate_offset;
}
out_gainmap_data = data_;
return true;
}
crabbyavif::avifImage* CrabbyAVIFImageDecoder::GetDecoderImage() const {
if (aux_image_ == cc::AuxImage::kGainmap) {
if (!decoder_->image->gainMap) {
DVLOG(1) << "Attempted to access gain map image, but gainMap is nullptr";
return nullptr;
}
return decoder_->image->gainMap->image;
}
return decoder_->image;
}
CrabbyAVIFImageDecoder::AvifIOData::AvifIOData() = default;
CrabbyAVIFImageDecoder::AvifIOData::AvifIOData(
scoped_refptr<const SegmentReader> reader,
bool all_data_received)
: reader(std::move(reader)), all_data_received(all_data_received) {}
CrabbyAVIFImageDecoder::AvifIOData::~AvifIOData() = default;
} // namespace blink
|