1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
|
// Copyright 2008 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_reader.h"
#include "third_party/blink/renderer/platform/image-decoders/jpeg/jpeg_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/png/png_decoder_factory.h"
#include "third_party/skia/include/core/SkColorSpace.h"
namespace {
// See comments on lookup_table_addresses_ in the header.
constexpr uint8_t nBitTo8BitlookupTable[] = {
// clang-format off
// 1 bit
0, 255,
// 2 bits
0, 85, 170, 255,
// 3 bits
0, 36, 73, 109, 146, 182, 219, 255,
// 4 bits
0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255,
// 5 bits
0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140,
148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255,
// 6 bits
0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 45, 49, 53, 57, 61, 65, 69, 73, 77,
81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142,
146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202,
206, 210, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255,
// 7 bits
0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,
40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 126, 129, 131, 133, 135, 137, 139, 141,
143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171,
173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201,
203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231,
233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255,
// clang-format on
};
} // namespace
namespace blink {
BMPImageReader::BMPImageReader(ImageDecoder* parent,
wtf_size_t decoded_and_header_offset,
wtf_size_t img_data_offset,
bool is_in_ico)
: parent_(parent),
decoded_offset_(decoded_and_header_offset),
header_offset_(decoded_and_header_offset),
img_data_offset_(img_data_offset),
is_in_ico_(is_in_ico) {
// Clue-in decodeBMP() that we need to detect the correct info header size.
memset(&info_header_, 0, sizeof(info_header_));
}
BMPImageReader::~BMPImageReader() = default;
void BMPImageReader::SetData(scoped_refptr<SegmentReader> data) {
data_ = data;
fast_reader_.SetData(std::move(data));
if (alternate_decoder_) {
alternate_decoder_->SetData(data_.get(), parent_->IsAllDataReceived());
}
}
bool BMPImageReader::DecodeBMP(bool only_size) {
// Defensively clear the FastSharedBufferReader's cache, as another caller
// may have called SharedBuffer::MergeSegmentsIntoBuffer().
fast_reader_.ClearCache();
// Calculate size of info header.
if (!info_header_.size && !ReadInfoHeaderSize()) {
return false;
}
const wtf_size_t header_end = header_offset_ + info_header_.size;
// Read and process info header.
if ((decoded_offset_ < header_end) && !ProcessInfoHeader()) {
return false;
}
// If there is an applicable color profile, it must be processed now, since
// once the image size is available, the decoding machinery assumes the color
// space is as well. Unfortunately, since the profile appears after
// everything else, this may delay processing until all data is received.
// Luckily, few BMPs have an embedded color profile.
const bool use_alternate_decoder =
(info_header_.compression == JPEG) || (info_header_.compression == PNG);
if (!use_alternate_decoder && info_header_.profile_data &&
!ProcessEmbeddedColorProfile()) {
return false;
}
// Set our size if we haven't already. In ICO files, IsDecodedSizeAvailable()
// always returns true (since it reflects the size in the directory, which has
// already been read); call SetSize() anyway, since it sanity-checks that the
// size here matches the directory.
if ((is_in_ico_ || !parent_->IsDecodedSizeAvailable()) &&
!parent_->SetSize(static_cast<unsigned>(info_header_.width),
static_cast<unsigned>(info_header_.height))) {
return false;
}
if (only_size) {
return true;
}
if (use_alternate_decoder) {
return DecodeAlternateFormat();
}
// Read and process the bitmasks, if needed.
if (need_to_process_bitmasks_ && !ProcessBitmasks()) {
return false;
}
// Read and process the color table, if needed.
if (need_to_process_color_table_ && !ProcessColorTable()) {
return false;
}
// Initialize the framebuffer if needed.
DCHECK(buffer_); // Parent should set this before asking us to decode!
if ((buffer_->GetStatus() == ImageFrame::kFrameEmpty) && !InitFrame()) {
return false;
}
// Decode the data.
if (!decoding_and_mask_ && !PastEndOfImage(0) &&
!DecodePixelData((info_header_.compression != RLE4) &&
(info_header_.compression != RLE8) &&
(info_header_.compression != RLE24))) {
return false;
}
// If the image has an AND mask and there was no alpha data, process the
// mask.
if (is_in_ico_ && !decoding_and_mask_ &&
((info_header_.bit_count < 16) || !bit_masks_[3] ||
!seen_non_zero_alpha_pixel_)) {
// Reset decoding coordinates to start of image.
coord_.set_x(0);
coord_.set_y(is_top_down_ ? 0 : (parent_->Size().height() - 1));
// The AND mask is stored as 1-bit data.
info_header_.bit_count = 1;
decoding_and_mask_ = true;
}
if (decoding_and_mask_ && !DecodePixelData(true)) {
return false;
}
// Done!
buffer_->SetStatus(ImageFrame::kFrameComplete);
return true;
}
bool BMPImageReader::ReadInfoHeaderSize() {
// Get size of info header.
DCHECK_EQ(decoded_offset_, header_offset_);
if ((decoded_offset_ > data_->size()) ||
((data_->size() - decoded_offset_) < 4)) {
return false;
}
info_header_.size = ReadUint32(0);
// Don't increment decoded_offset here, it just makes the code in
// ProcessInfoHeader() more confusing.
// Don't allow the header to overflow (which would be harmless here, but
// problematic or at least confusing in other places), or to overrun the
// image data.
const wtf_size_t header_end = header_offset_ + info_header_.size;
if ((header_end < header_offset_) ||
(img_data_offset_ && (img_data_offset_ < header_end))) {
return parent_->SetFailed();
}
// See if this is a header size we understand. See comments in
// ReadInfoHeader() for more.
if (info_header_.size == 12) {
// OS/2 1.x (and Windows V2): 12
is_os21x_ = true;
} else if ((info_header_.size == 40) || HasRGBMasksInHeader()) {
// Windows V3+: 40, 52, 56, 108, 124
} else if ((info_header_.size >= 16) && (info_header_.size <= 64) &&
(!(info_header_.size & 3) || (info_header_.size == 42) ||
(info_header_.size == 46))) {
// OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
is_os22x_ = true;
} else {
return parent_->SetFailed();
}
return true;
}
bool BMPImageReader::ProcessInfoHeader() {
// Read info header.
DCHECK_EQ(decoded_offset_, header_offset_);
if ((decoded_offset_ > data_->size()) ||
((data_->size() - decoded_offset_) < info_header_.size) ||
!ReadInfoHeader()) {
return false;
}
// Sanity-check header values before doing further fixup.
if (!IsInfoHeaderValid()) {
return parent_->SetFailed();
}
// For paletted images, bitmaps can set clr_used to 0 to mean "all colors", so
// set it to the maximum number of colors for this bit depth. Also do this
// for bitmaps that put too large a value here.
if (info_header_.bit_count < 16) {
const uint32_t max_colors = uint32_t{1} << info_header_.bit_count;
if (!info_header_.clr_used || (info_header_.clr_used > max_colors)) {
info_header_.clr_used = max_colors;
}
}
// For any bitmaps that set their BitCount to the wrong value, reset the
// counts now that we've calculated the number of necessary colors, since
// other code relies on this value being correct.
if (info_header_.compression == RLE8) {
info_header_.bit_count = 8;
} else if (info_header_.compression == RLE4) {
info_header_.bit_count = 4;
}
// Tell caller what still needs to be processed.
if (info_header_.bit_count >= 16) {
need_to_process_bitmasks_ = true;
} else if (info_header_.bit_count) {
need_to_process_color_table_ = true;
}
decoded_offset_ += info_header_.size;
return true;
}
bool BMPImageReader::ReadInfoHeader() {
// Supported info header formats:
// * BITMAPCOREHEADER/OS21XBITMAPHEADER/"Windows V2". Windows 2.x (?),
// OS/2 1.x. 12 bytes. Incompatible with all below headers.
// * BITMAPINFOHEADER/"Windows V3". Windows 3.x. 40 bytes. Changes width/
// height fields to 32 bit and adds features such as compression types.
// (Nomenclature: Note that "Windows V3" here and "BITMAPV3..." below are
// different things.)
// * OS22XBITMAPHEADER/BITMAPCOREHEADER2. OS/2 2.x. 16-64 bytes. The first
// 40 bytes are basically identical to BITMAPINFOHEADER, save that most
// fields are optional. Further fields, if present, are incompatible with
// all below headers. Adds features such as halftoning and color spaces
// (not implemented here).
// * BITMAPV2HEADER/BITMAPV2INFOHEADER. 52 bytes. Extends BITMAPINFOHEADER
// with R/G/B masks. Poorly-documented and obscure.
// * BITMAPV3HEADER/BITMAPV3INFOHEADER. 56 bytes. Extends BITMAPV2HEADER
// with an alpha mask. Poorly-documented and obscure.
// * BITMAPV4HEADER/"Windows V4". Windows 95. 108 bytes. Extends
// BITMAPV3HEADER with color space support.
// * BITMAPV5HEADER/"Windows V5". Windows 98. 124 bytes. Extends
// BITMAPV4HEADER with ICC profile support.
// Pre-initialize some fields that not all headers set.
info_header_.compression = RGB;
info_header_.clr_used = 0;
info_header_.profile_data = 0;
info_header_.profile_size = 0;
if (is_os21x_) {
info_header_.width = ReadUint16(4);
info_header_.height = ReadUint16(6);
info_header_.bit_count = ReadUint16(10);
return true;
}
info_header_.width = ReadUint32(4);
info_header_.height = ReadUint32(8);
if (is_in_ico_) {
info_header_.height /= 2;
}
// Detect top-down BMPs.
if (info_header_.height < 0) {
// We can't negate INT32_MIN below to get a positive int32_t.
// IsInfoHeaderValid() will reject heights of 1 << 16 or larger anyway,
// so just reject this bitmap now.
if (info_header_.height == INT32_MIN) {
return parent_->SetFailed();
}
is_top_down_ = true;
info_header_.height = -info_header_.height;
}
info_header_.bit_count = ReadUint16(14);
// Read compression type, if present.
if (info_header_.size >= 20) {
const uint32_t compression = ReadUint32(16);
// Detect OS/2 2.x-specific compression types.
if ((compression == 3) && (info_header_.bit_count == 1)) {
info_header_.compression = HUFFMAN1D;
is_os22x_ = true;
} else if ((compression == 4) && (info_header_.bit_count == 24)) {
info_header_.compression = RLE24;
is_os22x_ = true;
} else if (compression > ALPHABITFIELDS) {
return parent_->SetFailed(); // Some type we don't understand.
} else {
info_header_.compression = static_cast<CompressionType>(compression);
}
}
// Read colors used, if present.
if (info_header_.size >= 36) {
info_header_.clr_used = ReadUint32(32);
}
// If we can safely read the four bitmasks from 40-56 bytes in, do that here.
// If the bit depth is less than 16, these values will be ignored by the image
// data decoders. If the bit depth is at least 16 but the compression format
// isn't [ALPHA]BITFIELDS, the RGB bitmasks will be ignored and overwritten in
// processBitmasks(). (The alpha bitmask will never be overwritten: images
// that actually want alpha have to specify a valid alpha mask. See comments
// in ProcessBitmasks().)
//
// For other BMPs, bit_masks_[] et. al will be initialized later during
// ProcessBitmasks().
if (HasRGBMasksInHeader()) {
bit_masks_[0] = ReadUint32(40);
bit_masks_[1] = ReadUint32(44);
bit_masks_[2] = ReadUint32(48);
}
if (HasAlphaMaskInHeader()) {
bit_masks_[3] = ReadUint32(52);
}
// Read color space information, if present and desirable.
if (HasColorSpaceInfoInHeader() && !parent_->IgnoresColorSpace()) {
enum {
kLcsCalibratedRGB = 0x00000000,
kLcssRGB = 0x73524742, // "sRGB"
kLcsWindowsColorSpace = 0x57696E20, // "Win "
kProfileLinked = 0x4c494e4b, // "LINK"
kProfileEmbedded = 0x4d424544, // "MBED"
};
const uint32_t cs_type = ReadUint32(56);
switch (cs_type) {
case kLcsCalibratedRGB: { // Endpoints and gamma specified directly
skcms_ICCProfile profile;
skcms_Init(&profile);
// Convert chromaticity values from 2.30 fixed point to floating point.
const auto fxpt2dot30_to_float = [](uint32_t fxpt2dot30) {
return fxpt2dot30 * 9.31322574615478515625e-10f;
};
const float rx = fxpt2dot30_to_float(ReadUint32(60));
const float ry = fxpt2dot30_to_float(ReadUint32(64));
const float gx = fxpt2dot30_to_float(ReadUint32(72));
const float gy = fxpt2dot30_to_float(ReadUint32(76));
const float bx = fxpt2dot30_to_float(ReadUint32(84));
const float by = fxpt2dot30_to_float(ReadUint32(88));
// BMPs do not explicitly encode a white point. Using the sRGB
// illuminant (D65) seems reasonable given that Windows' system color
// space is sRGB.
constexpr float kD65x = 0.31271;
constexpr float kD65y = 0.32902;
skcms_Matrix3x3 to_xyzd50;
if (!skcms_PrimariesToXYZD50(rx, ry, gx, gy, bx, by, kD65x, kD65y,
&to_xyzd50)) {
// Some real-world images have bogus values, e.g. all zeros. Ignore
// the color space data in such cases, rather than failing.
break;
}
skcms_SetXYZD50(&profile, &to_xyzd50);
// Convert gamma values from 16.16 fixed point to transfer functions.
const auto fxpt16dot16_to_fn = [](uint32_t fxpt16dot16) {
skcms_TransferFunction fn;
fn.a = 1.0f;
fn.b = fn.c = fn.d = fn.e = fn.f = 0.0f;
// Petzold's "Programming Windows" claims the gamma here is a decoding
// gamma (e.g. 2.2), as opposed to the inverse, an encoding gamma
// (like PNG encodes in its gAMA chunk).
fn.g = SkFixedToFloat(fxpt16dot16);
return fn;
};
profile.has_trc = true;
profile.trc[0].table_entries = 0;
profile.trc[0].parametric = fxpt16dot16_to_fn(ReadUint32(96));
profile.trc[1].table_entries = 0;
profile.trc[1].parametric = fxpt16dot16_to_fn(ReadUint32(100));
profile.trc[2].table_entries = 0;
profile.trc[2].parametric = fxpt16dot16_to_fn(ReadUint32(104));
parent_->SetEmbeddedColorProfile(
std::make_unique<ColorProfile>(profile));
break;
}
case kLcssRGB: // sRGB
case kLcsWindowsColorSpace: // "The Windows default color space" (sRGB)
parent_->SetEmbeddedColorProfile(
std::make_unique<ColorProfile>(*skcms_sRGB_profile()));
break;
case kProfileEmbedded: // Embedded ICC profile
if (info_header_.size >= 120) {
info_header_.profile_data = header_offset_ + ReadUint32(112);
info_header_.profile_size = ReadUint32(116);
}
break;
case kProfileLinked: // Linked ICC profile. Unsupported; presents
// security concerns.
default: // Unknown.
break;
}
}
return true;
}
bool BMPImageReader::IsInfoHeaderValid() const {
// Non-positive widths/heights are invalid. (We've already flipped the
// sign of the height for top-down bitmaps.)
if ((info_header_.width <= 0) || !info_header_.height) {
return false;
}
// Only Windows V3+ has ICOs and top-down bitmaps.
if ((is_in_ico_ || is_top_down_) && (is_os21x_ || is_os22x_)) {
return false;
}
// Only bit depths of 1, 4, 8, or 24 are universally supported.
if ((info_header_.bit_count != 1) && (info_header_.bit_count != 4) &&
(info_header_.bit_count != 8) && (info_header_.bit_count != 24)) {
// Windows V3+ additionally supports bit depths of 0 (for embedded
// JPEG/PNG images), 2 (on Windows CE), 16, and 32.
if (is_os21x_ || is_os22x_ ||
(info_header_.bit_count && (info_header_.bit_count != 2) &&
(info_header_.bit_count != 16) && (info_header_.bit_count != 32))) {
return false;
}
}
// Each compression type is only valid with certain bit depths (except RGB,
// which can be used with any bit depth). Also, some formats do not support
// some compression types.
switch (info_header_.compression) {
case RGB:
if (!info_header_.bit_count) {
return false;
}
break;
case RLE8:
// Supposedly there are undocumented formats like "BitCount = 1,
// Compression = RLE4" (which means "4 bit, but with a 2-color table"),
// so also allow the paletted RLE compression types to have too low a
// bit count; we'll correct this later.
if (!info_header_.bit_count || (info_header_.bit_count > 8)) {
return false;
}
break;
case RLE4:
// See comments in RLE8.
if (!info_header_.bit_count || (info_header_.bit_count > 4)) {
return false;
}
break;
case BITFIELDS:
case ALPHABITFIELDS:
// Only valid for Windows V3+.
if (is_os21x_ || is_os22x_ ||
((info_header_.bit_count != 16) && (info_header_.bit_count != 32))) {
return false;
}
break;
case JPEG:
case PNG:
// Only valid for Windows V3+. We don't support embedding these inside
// ICO files.
if (is_os21x_ || is_os22x_ || info_header_.bit_count ||
!img_data_offset_) {
return false;
}
break;
case HUFFMAN1D:
// Only valid for OS/2 2.x.
if (!is_os22x_ || (info_header_.bit_count != 1)) {
return false;
}
break;
case RLE24:
// Only valid for OS/2 2.x.
if (!is_os22x_ || (info_header_.bit_count != 24)) {
return false;
}
break;
default:
// Some type we don't understand. This should have been caught in
// ReadInfoHeader().
NOTREACHED();
}
// Reject the following valid bitmap types that we don't currently bother
// decoding. Few other people decode these either, they're unlikely to be
// in much use.
// TODO(pkasting): Consider supporting these someday.
// * Bitmaps larger than 2^16 pixels in either dimension.
if ((info_header_.width >= (1 << 16)) || (info_header_.height >= (1 << 16))) {
return false;
}
// * OS/2 2.x Huffman-encoded monochrome bitmaps (see
// http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
// algorithm; this seems to be used in TIFF files as well).
if (info_header_.compression == HUFFMAN1D) {
return false;
}
return true;
}
bool BMPImageReader::DecodeAlternateFormat() {
// Create decoder if necessary.
if (!alternate_decoder_) {
if (info_header_.compression == JPEG) {
alternate_decoder_ = std::make_unique<JPEGImageDecoder>(
parent_->GetAlphaOption(), parent_->GetColorBehavior(),
parent_->GetAuxImage(), parent_->GetMaxDecodedBytes(),
img_data_offset_);
} else {
alternate_decoder_ = CreatePngImageDecoder(
parent_->GetAlphaOption(), ImageDecoder::kDefaultBitDepth,
parent_->GetColorBehavior(), parent_->GetMaxDecodedBytes(),
img_data_offset_);
}
alternate_decoder_->SetData(data_.get(), parent_->IsAllDataReceived());
}
// Decode the image.
if (alternate_decoder_->IsSizeAvailable()) {
if (alternate_decoder_->Size() != parent_->Size()) {
return parent_->SetFailed();
}
alternate_decoder_->SetMemoryAllocator(buffer_->GetAllocator());
const auto* frame = alternate_decoder_->DecodeFrameBufferAtIndex(0);
alternate_decoder_->SetMemoryAllocator(nullptr);
if (frame) {
*buffer_ = *frame;
}
}
return alternate_decoder_->Failed()
? parent_->SetFailed()
: (buffer_->GetStatus() == ImageFrame::kFrameComplete);
}
bool BMPImageReader::ProcessEmbeddedColorProfile() {
// Ensure we have received the whole profile.
if ((info_header_.profile_data > data_->size()) ||
((data_->size() - info_header_.profile_data) <
info_header_.profile_size)) {
return false;
}
// Parse the profile.
auto owned_buffer = std::make_unique<char[]>(info_header_.profile_size);
const char* buffer = fast_reader_.GetConsecutiveData(
info_header_.profile_data, info_header_.profile_size, owned_buffer.get());
auto profile = ColorProfile::Create(
base::as_bytes(base::span(buffer, info_header_.profile_size)));
if (!profile) {
return parent_->SetFailed();
}
parent_->SetEmbeddedColorProfile(std::move(profile));
// Zero |profile_data| so we don't try to process the profile again in the
// future.
info_header_.profile_data = 0;
return true;
}
bool BMPImageReader::ProcessBitmasks() {
// Create bit_masks_[] values for R/G/B.
if ((info_header_.compression != BITFIELDS) &&
(info_header_.compression != ALPHABITFIELDS)) {
// The format doesn't actually use bitmasks. To simplify the decode
// logic later, create bitmasks for the RGB data. For Windows V4+,
// this overwrites the masks we read from the header, which are
// supposed to be ignored in non-BITFIELDS cases.
// 16 bits: MSB <- xRRRRRGG GGGBBBBB -> LSB
// 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
const int num_bits = (info_header_.bit_count == 16) ? 5 : 8;
for (int i = 0; i <= 2; ++i) {
bit_masks_[i] = ((uint32_t{1} << (num_bits * (3 - i))) - 1) ^
((uint32_t{1} << (num_bits * (2 - i))) - 1);
}
} else if (!HasRGBMasksInHeader()) {
// For HasRGBMasksInHeader() bitmaps, this was already done when we read the
// info header.
// Fail if we don't have enough file space for the bitmasks.
const wtf_size_t header_end = header_offset_ + info_header_.size;
const bool read_alpha = info_header_.compression == ALPHABITFIELDS;
const wtf_size_t kBitmasksSize = read_alpha ? 16 : 12;
const wtf_size_t bitmasks_end = header_end + kBitmasksSize;
if ((bitmasks_end < header_end) ||
(img_data_offset_ && (img_data_offset_ < bitmasks_end))) {
return parent_->SetFailed();
}
// Read bitmasks.
if ((data_->size() - decoded_offset_) < kBitmasksSize) {
return false;
}
bit_masks_[0] = ReadUint32(0);
bit_masks_[1] = ReadUint32(4);
bit_masks_[2] = ReadUint32(8);
if (read_alpha) {
bit_masks_[3] = ReadUint32(12);
}
decoded_offset_ += kBitmasksSize;
}
// Alpha is a poorly-documented and inconsistently-used feature.
//
// BITMAPV3HEADER+ have an alpha bitmask in the info header. Unlike the R/G/B
// bitmasks, the MSDN docs don't indicate that it is only valid for the
// BITFIELDS compression format, so we respect it at all times.
//
// Windows CE supports the ALPHABITFIELDS compression format, which is rare.
// We assume any mask specified by this format is valid as well.
//
// To complicate things, Windows V3 BMPs, which lack a mask, can specify 32bpp
// format, which to any sane reader would imply an 8-bit alpha channel -- and
// for BMPs-in-ICOs, that's precisely what's intended to happen. There also
// exist standalone BMPs in this format which clearly expect the alpha channel
// to be respected. However, there are many other BMPs which, for example,
// fill this channel with all 0s, yet clearly expect to not be displayed as a
// fully-transparent rectangle.
//
// If these were the only two types of Windows V3, 32bpp BMPs in the wild,
// we could distinguish between them by scanning the alpha channel in the
// image, looking for nonzero values, and only enabling alpha if we found
// some. (It turns out we have to do this anyway, because, crazily, there
// are also Windows V4+ BMPs with an explicit, non-zero alpha mask, which
// then zero-fill their alpha channels! See comments in
// processNonRLEData().)
//
// Unfortunately there are also V3 BMPs -- indeed, probably more than the
// number of 32bpp, V3 BMPs which intentionally use alpha -- which specify
// 32bpp format, use nonzero (and non-255) alpha values, and yet expect to
// be rendered fully-opaque. And other browsers do so.
//
// So it's impossible to display every BMP in the way its creators intended,
// and we have to choose what to break. Given the paragraph above, we match
// other browsers and ignore alpha in Windows V3 BMPs except inside ICO
// files.
if (!HasAlphaMaskInHeader() && (info_header_.compression != ALPHABITFIELDS)) {
const bool use_mask = is_in_ico_ &&
(info_header_.compression != BITFIELDS) &&
(info_header_.bit_count == 32);
bit_masks_[3] = use_mask ? uint32_t{0xff000000} : 0;
}
// Check masks and set shift and LUT address values.
for (int i = 0; i < 4; ++i) {
// Trim the mask to the allowed bit depth. Some Windows V4+ BMPs
// specify a bogus alpha channel in bits that don't exist in the pixel
// data (for example, bits 25-31 in a 24-bit RGB format).
if (info_header_.bit_count < 32) {
bit_masks_[i] &= ((uint32_t{1} << info_header_.bit_count) - 1);
}
// For empty masks (common on the alpha channel, especially after the
// trimming above), quickly clear the shift and LUT address and
// continue, to avoid an infinite loop in the counting code below.
uint32_t temp_mask = bit_masks_[i];
if (!temp_mask) {
bit_shifts_right_[i] = 0;
lookup_table_addresses_[i] = nullptr;
continue;
}
// Make sure bitmask does not overlap any other bitmasks.
for (int j = 0; j < i; ++j) {
if (temp_mask & bit_masks_[j]) {
return parent_->SetFailed();
}
}
// Count offset into pixel data.
for (bit_shifts_right_[i] = 0; !(temp_mask & 1); temp_mask >>= 1) {
++bit_shifts_right_[i];
}
// Count size of mask.
wtf_size_t num_bits = 0;
for (; temp_mask & 1; temp_mask >>= 1) {
++num_bits;
}
// Make sure bitmask is contiguous.
if (temp_mask) {
return parent_->SetFailed();
}
// Since RGBABuffer tops out at 8 bits per channel, adjust the shift
// amounts to use the most significant 8 bits of the channel.
if (num_bits >= 8) {
bit_shifts_right_[i] += (num_bits - 8);
num_bits = 0;
}
// Calculate LUT address.
lookup_table_addresses_[i] =
num_bits ? (nBitTo8BitlookupTable + (1 << num_bits) - 2) : nullptr;
}
// We've now decoded all the non-image data we care about. Skip anything
// else before the actual raster data.
if (img_data_offset_) {
decoded_offset_ = img_data_offset_;
}
need_to_process_bitmasks_ = false;
return true;
}
bool BMPImageReader::ProcessColorTable() {
// On non-OS/2 1.x, an extra padding byte is present, which we need to skip.
const wtf_size_t bytes_per_color = is_os21x_ ? 3 : 4;
const wtf_size_t header_end = header_offset_ + info_header_.size;
wtf_size_t colors_in_palette = info_header_.clr_used;
CHECK_LE(colors_in_palette, 256u); // Enforced by ProcessInfoHeader().
wtf_size_t table_size_in_bytes = colors_in_palette * bytes_per_color;
const wtf_size_t table_end = header_end + table_size_in_bytes;
if (table_end < header_end) {
return parent_->SetFailed();
}
// Some BMPs don't contain a complete palette. Truncate it instead of reading
// off the end of the palette.
if (img_data_offset_ && (img_data_offset_ < table_end)) {
wtf_size_t colors_in_truncated_palette =
(img_data_offset_ - header_end) / bytes_per_color;
CHECK_LE(colors_in_truncated_palette, colors_in_palette);
colors_in_palette = colors_in_truncated_palette;
table_size_in_bytes = colors_in_palette * bytes_per_color;
}
// If we don't have enough data to read in the whole palette yet, stop here.
if ((decoded_offset_ > data_->size()) ||
((data_->size() - decoded_offset_) < table_size_in_bytes)) {
return false;
}
// Read the color table.
color_table_.resize(colors_in_palette);
for (wtf_size_t i = 0; i < colors_in_palette; ++i) {
color_table_[i].rgb_blue = ReadUint8(0);
color_table_[i].rgb_green = ReadUint8(1);
color_table_[i].rgb_red = ReadUint8(2);
decoded_offset_ += bytes_per_color;
}
// We've now decoded all the non-image data we care about. Skip anything
// else before the actual raster data.
if (img_data_offset_) {
decoded_offset_ = img_data_offset_;
}
need_to_process_color_table_ = false;
return true;
}
bool BMPImageReader::InitFrame() {
if (!buffer_->AllocatePixelData(parent_->Size().width(),
parent_->Size().height(),
parent_->ColorSpaceForSkImages())) {
return parent_->SetFailed(); // Unable to allocate.
}
buffer_->ZeroFillPixelData();
buffer_->SetStatus(ImageFrame::kFramePartial);
// SetSize() calls EraseARGB(), which resets the alpha flag, so we force it
// back to false here. We'll set it to true later in all cases where these 0s
// could actually show through.
buffer_->SetHasAlpha(false);
// For BMPs, the frame always fills the entire image.
buffer_->SetOriginalFrameRect(gfx::Rect(parent_->Size()));
if (!is_top_down_) {
coord_.set_y(parent_->Size().height() - 1);
}
return true;
}
bool BMPImageReader::DecodePixelData(bool non_rle) {
const gfx::Point coord(coord_);
const ProcessingResult result =
non_rle ? ProcessNonRLEData(false, 0) : ProcessRLEData();
if (coord_ != coord) {
buffer_->SetPixelsChanged(true);
}
return (result == kFailure) ? parent_->SetFailed() : (result == kSuccess);
}
BMPImageReader::ProcessingResult BMPImageReader::ProcessRLEData() {
if (decoded_offset_ > data_->size()) {
return kInsufficientData;
}
// RLE decoding is poorly specified. Two main problems:
// (1) Are EOL markers necessary? What happens when we have too many
// pixels for one row?
// http://www.fileformat.info/format/bmp/egff.htm says extra pixels
// should wrap to the next line. Real BMPs I've encountered seem to
// instead expect extra pixels to be ignored until the EOL marker is
// seen, although this has only happened in a few cases and I suspect
// those BMPs may be invalid. So we only change lines on EOL (or Delta
// with dy > 0), and fail in most cases when pixels extend past the end
// of the line.
// (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
// pixels?
// http://www.daubnet.com/formats/BMP.html says these should be filled
// with color 0. However, the "do nothing" and "don't care" comments
// of other references suggest leaving these alone, i.e. letting them
// be transparent to the background behind the image. This seems to
// match how MSPAINT treats BMPs, so we do that. Note that when we
// actually skip pixels for a case like this, we need to note on the
// framebuffer that we have alpha.
// Impossible to decode row-at-a-time, so just do things as a stream of
// bytes.
while (true) {
// Every entry takes at least two bytes; bail if there isn't enough
// data.
if ((data_->size() - decoded_offset_) < 2) {
return kInsufficientData;
}
// For every entry except EOF, we'd better not have reached the end of
// the image.
const uint8_t count = ReadUint8(0);
const uint8_t code = ReadUint8(1);
const bool is_past_end_of_image = PastEndOfImage(0);
if ((count || (code != 1)) && is_past_end_of_image) {
return kFailure;
}
// Decode.
if (!count) {
switch (code) {
case 0: // Magic token: EOL
// Skip any remaining pixels in this row.
if (coord_.x() < parent_->Size().width()) {
buffer_->SetHasAlpha(true);
}
ColorCorrectCurrentRow();
MoveBufferToNextRow();
decoded_offset_ += 2;
break;
case 1: // Magic token: EOF
// Skip any remaining pixels in the image.
if ((coord_.x() < parent_->Size().width()) ||
(is_top_down_ ? (coord_.y() < (parent_->Size().height() - 1))
: (coord_.y() > 0))) {
buffer_->SetHasAlpha(true);
}
if (!is_past_end_of_image) {
ColorCorrectCurrentRow();
}
// There's no need to move |coord_| here to trigger the caller
// to call SetPixelsChanged(). If the only thing that's changed
// is the alpha state, that will be properly written into the
// underlying SkBitmap when we mark the frame complete.
return kSuccess;
case 2: { // Magic token: Delta
// The next two bytes specify dx and dy. Bail if there isn't
// enough data.
if ((data_->size() - decoded_offset_) < 4) {
return kInsufficientData;
}
// Fail if this takes us past the end of the desired row or
// past the end of the image.
const uint8_t dx = ReadUint8(2);
const uint8_t dy = ReadUint8(3);
if (dx || dy) {
buffer_->SetHasAlpha(true);
if (dy) {
ColorCorrectCurrentRow();
}
}
if (((coord_.x() + dx) > parent_->Size().width()) ||
PastEndOfImage(dy)) {
return kFailure;
}
// Skip intervening pixels.
coord_.Offset(dx, is_top_down_ ? dy : -dy);
decoded_offset_ += 4;
break;
}
default: { // Absolute mode
// |code| pixels specified as in BI_RGB, zero-padded at the end
// to a multiple of 16 bits.
// Because ProcessNonRLEData() expects decoded_offset_ to
// point to the beginning of the pixel data, bump it past
// the escape bytes and then reset if decoding failed.
decoded_offset_ += 2;
const ProcessingResult result = ProcessNonRLEData(true, code);
if (result != kSuccess) {
decoded_offset_ -= 2;
return result;
}
break;
}
}
} else { // Encoded mode
// The following color data is repeated for |count| total pixels.
// Strangely, some BMPs seem to specify excessively large counts
// here; ignore pixels past the end of the row.
const int end_x = std::min(coord_.x() + count, parent_->Size().width());
if (info_header_.compression == RLE24) {
// Bail if there isn't enough data.
if ((data_->size() - decoded_offset_) < 4) {
return kInsufficientData;
}
// One BGR triple that we copy |count| times.
FillRGBA(end_x, ReadUint8(3), ReadUint8(2), code, 0xff);
decoded_offset_ += 4;
} else {
// RLE8 has one color index that gets repeated; RLE4 has two
// color indexes in the upper and lower 4 bits of the byte,
// which are alternated.
wtf_size_t color_indexes[2] = {code, code};
if (info_header_.compression == RLE4) {
color_indexes[0] = (color_indexes[0] >> 4) & 0xf;
color_indexes[1] &= 0xf;
}
for (wtf_size_t which = 0; coord_.x() < end_x;) {
// Some images specify color values past the end of the
// color table; set these pixels to black.
if (color_indexes[which] < color_table_.size()) {
SetI(color_indexes[which]);
} else {
SetRGBA(0, 0, 0, 255);
}
which = !which;
}
decoded_offset_ += 2;
}
}
}
}
BMPImageReader::ProcessingResult BMPImageReader::ProcessNonRLEData(
bool in_rle,
int num_pixels) {
if (decoded_offset_ > data_->size()) {
return kInsufficientData;
}
if (!in_rle) {
num_pixels = parent_->Size().width();
}
// Fail if we're being asked to decode more pixels than remain in the row.
const int end_x = coord_.x() + num_pixels;
if (end_x > parent_->Size().width()) {
return kFailure;
}
// Determine how many bytes of data the requested number of pixels
// requires.
const wtf_size_t pixels_per_byte = 8 / info_header_.bit_count;
const wtf_size_t bytes_per_pixel = info_header_.bit_count / 8;
const wtf_size_t unpadded_num_bytes =
(info_header_.bit_count < 16)
? ((num_pixels + pixels_per_byte - 1) / pixels_per_byte)
: (num_pixels * bytes_per_pixel);
// RLE runs are zero-padded at the end to a multiple of 16 bits. Non-RLE
// data is in rows and is zero-padded to a multiple of 32 bits.
const wtf_size_t align_bits = in_rle ? 1 : 3;
const wtf_size_t padded_num_bytes =
(unpadded_num_bytes + align_bits) & ~align_bits;
// Decode as many rows as we can. (For RLE, where we only want to decode
// one row, we've already checked that this condition is true.)
while (!PastEndOfImage(0)) {
// Bail if we don't have enough data for the desired number of pixels.
if ((data_->size() - decoded_offset_) < padded_num_bytes) {
return kInsufficientData;
}
if (info_header_.bit_count < 16) {
// Paletted data. Pixels are stored little-endian within bytes.
// Decode pixels one byte at a time, left to right (so, starting at
// the most significant bits in the byte).
const uint8_t mask = (1 << info_header_.bit_count) - 1;
for (wtf_size_t end_offset = decoded_offset_ + unpadded_num_bytes;
decoded_offset_ < end_offset; ++decoded_offset_) {
uint8_t pixel_data = ReadUint8(0);
for (wtf_size_t pixel = 0;
(pixel < pixels_per_byte) && (coord_.x() < end_x); ++pixel) {
const wtf_size_t color_index =
(pixel_data >> (8 - info_header_.bit_count)) & mask;
if (decoding_and_mask_) {
// There's no way to accurately represent an AND + XOR
// operation as an RGBA image, so where the AND values
// are 1, we simply set the framebuffer pixels to fully
// transparent, on the assumption that most ICOs on the
// web will not be doing a lot of inverting.
if (color_index) {
SetRGBA(0, 0, 0, 0);
buffer_->SetHasAlpha(true);
} else {
coord_.Offset(1, 0);
}
} else {
// See comments near the end of ProcessRLEData().
if (color_index < color_table_.size()) {
SetI(color_index);
} else {
SetRGBA(0, 0, 0, 255);
}
}
pixel_data <<= info_header_.bit_count;
}
}
} else {
// RGB data. Decode pixels one at a time, left to right.
for (; coord_.x() < end_x; decoded_offset_ += bytes_per_pixel) {
const uint32_t pixel = ReadCurrentPixel(bytes_per_pixel);
// Some BMPs specify an alpha channel but don't actually use it
// (it contains all 0s). To avoid displaying these images as
// fully-transparent, decode as if images are fully opaque
// until we actually see a non-zero alpha value; at that point,
// reset any previously-decoded pixels to fully transparent and
// continue decoding based on the real alpha channel values.
// As an optimization, avoid calling SetHasAlpha(true) for
// images where all alpha values are 255; opaque images are
// faster to draw.
int alpha = GetAlpha(pixel);
if (!seen_non_zero_alpha_pixel_ && !alpha) {
seen_zero_alpha_pixel_ = true;
alpha = 255;
} else {
seen_non_zero_alpha_pixel_ = true;
if (seen_zero_alpha_pixel_) {
buffer_->ZeroFillPixelData();
seen_zero_alpha_pixel_ = false;
} else if (alpha != 255) {
buffer_->SetHasAlpha(true);
}
}
SetRGBA(GetComponent(pixel, 0), GetComponent(pixel, 1),
GetComponent(pixel, 2), alpha);
}
}
// Success, keep going.
decoded_offset_ += (padded_num_bytes - unpadded_num_bytes);
if (in_rle) {
return kSuccess;
}
ColorCorrectCurrentRow();
MoveBufferToNextRow();
}
// Finished decoding whole image.
return kSuccess;
}
void BMPImageReader::MoveBufferToNextRow() {
coord_.Offset(-coord_.x(), is_top_down_ ? 1 : -1);
}
void BMPImageReader::ColorCorrectCurrentRow() {
if (decoding_and_mask_) {
return;
}
// Postprocess the image data according to the profile.
const ColorProfileTransform* const transform = parent_->ColorTransform();
if (!transform) {
return;
}
int decoder_width = parent_->Size().width();
// Enforce 0 ≤ current row < bitmap height.
CHECK_GE(coord_.y(), 0);
CHECK_LT(coord_.y(), buffer_->Bitmap().height());
// Enforce decoder width == bitmap width exactly. (The bitmap rowbytes might
// add a bit of padding, but we are only converting one row at a time.)
CHECK_EQ(decoder_width, buffer_->Bitmap().width());
ImageFrame::PixelData* const row = buffer_->GetAddr(0, coord_.y());
const skcms_PixelFormat fmt = XformColorFormat();
const skcms_AlphaFormat alpha =
(buffer_->HasAlpha() && buffer_->PremultiplyAlpha())
? skcms_AlphaFormat_PremulAsEncoded
: skcms_AlphaFormat_Unpremul;
const bool success =
skcms_Transform(row, fmt, alpha, transform->SrcProfile(), row, fmt, alpha,
transform->DstProfile(), decoder_width);
DCHECK(success);
buffer_->SetPixelsChanged(true);
}
} // namespace blink
|