1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
|
/*
* Copyright (C) Research In Motion Limited 2009-2010. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "third_party/blink/renderer/platform/image-decoders/image_decoder.h"
#include <algorithm>
#include <memory>
#include "base/containers/heap_array.h"
#include "base/logging.h"
#include "base/numerics/byte_conversions.h"
#include "base/numerics/safe_conversions.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "media/media_buildflags.h"
#include "skia/ext/cicp.h"
#include "third_party/blink/public/common/buildflags.h"
#include "third_party/blink/public/common/features.h"
#include "third_party/blink/public/platform/platform.h"
#include "third_party/blink/renderer/platform/image-decoders/bmp/bmp_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/fast_shared_buffer_reader.h"
#include "third_party/blink/renderer/platform/image-decoders/gif/gif_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/ico/ico_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/jpeg/jpeg_image_decoder.h"
#include "third_party/blink/renderer/platform/image-decoders/png/png_decoder_factory.h"
#include "third_party/blink/renderer/platform/image-decoders/webp/webp_image_decoder.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/private/SkExif.h"
#include "ui/gfx/geometry/size.h"
#include "ui/gfx/geometry/size_conversions.h"
#if BUILDFLAG(ENABLE_AV1_DECODER)
#include "third_party/blink/renderer/platform/image-decoders/avif/crabbyavif_image_decoder.h"
#endif
namespace blink {
namespace {
cc::ImageType FileExtensionToImageType(String image_extension) {
if (image_extension == "png") {
return cc::ImageType::kPNG;
}
if (image_extension == "jpg") {
return cc::ImageType::kJPEG;
}
if (image_extension == "webp") {
return cc::ImageType::kWEBP;
}
if (image_extension == "gif") {
return cc::ImageType::kGIF;
}
if (image_extension == "ico") {
return cc::ImageType::kICO;
}
if (image_extension == "bmp") {
return cc::ImageType::kBMP;
}
#if BUILDFLAG(ENABLE_AV1_DECODER)
if (image_extension == "avif") {
return cc::ImageType::kAVIF;
}
#endif
return cc::ImageType::kInvalid;
}
wtf_size_t CalculateMaxDecodedBytes(
ImageDecoder::HighBitDepthDecodingOption high_bit_depth_decoding_option,
const SkISize& desired_size,
size_t platform_max_decoded_bytes) {
const wtf_size_t max_decoded_bytes =
base::saturated_cast<wtf_size_t>(platform_max_decoded_bytes);
if (desired_size.isEmpty()) {
return max_decoded_bytes;
}
const wtf_size_t num_pixels = desired_size.width() * desired_size.height();
if (high_bit_depth_decoding_option == ImageDecoder::kDefaultBitDepth) {
return std::min(4 * num_pixels, max_decoded_bytes);
}
// ImageDecoder::kHighBitDepthToHalfFloat
return std::min(8 * num_pixels, max_decoded_bytes);
}
// Compute the density corrected size based on |metadata| and the physical size
// of the associated image.
gfx::Size ExtractDensityCorrectedSize(const SkExif::Metadata& metadata,
const gfx::Size& physical_size) {
const unsigned kDefaultResolution = 72;
const unsigned kResolutionUnitDpi = 2;
gfx::SizeF resolution(metadata.fXResolution.value_or(0),
metadata.fYResolution.value_or(0));
gfx::Size size(metadata.fPixelXDimension.value_or(0),
metadata.fPixelYDimension.value_or(0));
if (metadata.fResolutionUnit != kResolutionUnitDpi || resolution.IsEmpty() ||
size.IsEmpty()) {
return physical_size;
}
// Division by zero is not possible since we check for empty resolution
// earlier.
gfx::SizeF size_from_resolution(
physical_size.width() * kDefaultResolution / resolution.width(),
physical_size.height() * kDefaultResolution / resolution.height());
if (gfx::ToRoundedSize(size_from_resolution) == size) {
return size;
}
return physical_size;
}
inline bool MatchesJPEGSignature(const char* contents) {
return !memcmp(contents, "\xFF\xD8\xFF", 3);
}
inline bool MatchesPNGSignature(const char* contents) {
return !memcmp(contents, "\x89PNG\r\n\x1A\n", 8);
}
inline bool MatchesGIFSignature(const char* contents) {
return !memcmp(contents, "GIF87a", 6) || !memcmp(contents, "GIF89a", 6);
}
inline bool MatchesWebPSignature(const char* contents) {
return !memcmp(contents, "RIFF", 4) && !memcmp(contents + 8, "WEBPVP", 6);
}
inline bool MatchesICOSignature(const char* contents) {
return !memcmp(contents, "\x00\x00\x01\x00", 4);
}
inline bool MatchesCURSignature(const char* contents) {
return !memcmp(contents, "\x00\x00\x02\x00", 4);
}
inline bool MatchesBMPSignature(const char* contents) {
return !memcmp(contents, "BM", 2) || !memcmp(contents, "BA", 2);
}
constexpr wtf_size_t kLongestSignatureLength = sizeof("RIFF????WEBPVP") - 1;
// static
String SniffMimeTypeInternal(scoped_refptr<SegmentReader> reader) {
// At least kLongestSignatureLength bytes are needed to sniff the signature.
if (reader->size() < kLongestSignatureLength) {
return String();
}
// Access the first kLongestSignatureLength chars to sniff the signature.
// (note: FastSharedBufferReader only makes a copy if the bytes are segmented)
char buffer[kLongestSignatureLength];
const FastSharedBufferReader fast_reader(reader);
const char* contents =
fast_reader.GetConsecutiveData(0, kLongestSignatureLength, buffer);
if (MatchesJPEGSignature(contents)) {
return "image/jpeg";
}
if (MatchesPNGSignature(contents)) {
return "image/png";
}
if (MatchesGIFSignature(contents)) {
return "image/gif";
}
if (MatchesWebPSignature(contents)) {
return "image/webp";
}
if (MatchesICOSignature(contents) || MatchesCURSignature(contents)) {
return "image/x-icon";
}
if (MatchesBMPSignature(contents)) {
return "image/bmp";
}
#if BUILDFLAG(ENABLE_AV1_DECODER)
if (CrabbyAVIFImageDecoder::MatchesAVIFSignature(fast_reader)) {
return "image/avif";
}
#endif
return String();
}
// Checks to see if a mime type is an image type with lossy compression, whose
// size will be restricted via the 'lossy-images-max-bpp' document
// policy. (JPEG)
bool IsLossyImageMIMEType(const String& mime_type) {
return EqualIgnoringASCIICase(mime_type, "image/jpeg") ||
EqualIgnoringASCIICase(mime_type, "image/jpg") ||
EqualIgnoringASCIICase(mime_type, "image/pjpeg");
}
// Checks to see if a mime type is an image type with lossless (or no)
// compression, whose size may be restricted via the
// 'lossless-images-max-bpp' document policy. (BMP, GIF, PNG, WEBP)
bool IsLosslessImageMIMEType(const String& mime_type) {
return EqualIgnoringASCIICase(mime_type, "image/bmp") ||
EqualIgnoringASCIICase(mime_type, "image/gif") ||
EqualIgnoringASCIICase(mime_type, "image/png") ||
EqualIgnoringASCIICase(mime_type, "image/webp") ||
EqualIgnoringASCIICase(mime_type, "image/x-xbitmap") ||
EqualIgnoringASCIICase(mime_type, "image/x-png");
}
} // namespace
ImageDecoder::ImageDecoder(
AlphaOption alpha_option,
HighBitDepthDecodingOption high_bit_depth_decoding_option,
ColorBehavior color_behavior,
cc::AuxImage aux_image,
wtf_size_t max_decoded_bytes)
: premultiply_alpha_(alpha_option == kAlphaPremultiplied),
high_bit_depth_decoding_option_(high_bit_depth_decoding_option),
color_behavior_(color_behavior),
aux_image_(aux_image),
max_decoded_bytes_(max_decoded_bytes),
allow_decode_to_yuv_(false),
purge_aggressively_(false) {}
ImageDecoder::~ImageDecoder() = default;
std::unique_ptr<ImageDecoder> ImageDecoder::Create(
scoped_refptr<SegmentReader> data,
bool data_complete,
AlphaOption alpha_option,
HighBitDepthDecodingOption high_bit_depth_decoding_option,
ColorBehavior color_behavior,
cc::AuxImage aux_image,
size_t platform_max_decoded_bytes,
const SkISize& desired_size,
AnimationOption animation_option) {
auto type = SniffMimeTypeInternal(data);
if (type.empty()) {
return nullptr;
}
return CreateByMimeType(type, std::move(data), data_complete, alpha_option,
high_bit_depth_decoding_option, color_behavior,
aux_image, platform_max_decoded_bytes, desired_size,
animation_option);
}
std::unique_ptr<ImageDecoder> ImageDecoder::CreateByMimeType(
String mime_type,
scoped_refptr<SegmentReader> data,
bool data_complete,
AlphaOption alpha_option,
HighBitDepthDecodingOption high_bit_depth_decoding_option,
ColorBehavior color_behavior,
cc::AuxImage aux_image,
size_t platform_max_decoded_bytes,
const SkISize& desired_size,
AnimationOption animation_option) {
const wtf_size_t max_decoded_bytes = CalculateMaxDecodedBytes(
high_bit_depth_decoding_option, desired_size, platform_max_decoded_bytes);
// Note: The mime types below should match those supported by
// MimeUtil::IsSupportedImageMimeType() (which forces lowercase).
std::unique_ptr<ImageDecoder> decoder;
mime_type = mime_type.LowerASCII();
if (mime_type == "image/jpeg" || mime_type == "image/pjpeg" ||
mime_type == "image/jpg") {
decoder = std::make_unique<JPEGImageDecoder>(alpha_option, color_behavior,
aux_image, max_decoded_bytes);
} else if (mime_type == "image/png" || mime_type == "image/x-png" ||
mime_type == "image/apng") {
decoder =
CreatePngImageDecoder(alpha_option, high_bit_depth_decoding_option,
color_behavior, max_decoded_bytes);
} else if (mime_type == "image/gif") {
decoder = std::make_unique<GIFImageDecoder>(alpha_option, color_behavior,
max_decoded_bytes);
} else if (mime_type == "image/webp") {
decoder = std::make_unique<WEBPImageDecoder>(alpha_option, color_behavior,
max_decoded_bytes);
} else if (mime_type == "image/x-icon" ||
mime_type == "image/vnd.microsoft.icon") {
decoder = std::make_unique<ICOImageDecoder>(alpha_option, color_behavior,
max_decoded_bytes);
} else if (mime_type == "image/bmp" || mime_type == "image/x-xbitmap") {
decoder = std::make_unique<BMPImageDecoder>(alpha_option, color_behavior,
max_decoded_bytes);
#if BUILDFLAG(ENABLE_AV1_DECODER)
} else if (mime_type == "image/avif") {
decoder = std::make_unique<CrabbyAVIFImageDecoder>(
alpha_option, high_bit_depth_decoding_option, color_behavior, aux_image,
max_decoded_bytes, animation_option);
#endif
}
if (decoder) {
decoder->SetData(std::move(data), data_complete);
}
return decoder;
}
bool ImageDecoder::IsAllDataReceived() const {
return is_all_data_received_;
}
bool ImageDecoder::ImageIsHighBitDepth() {
return false;
}
bool ImageDecoder::HasSufficientDataToSniffMimeType(const SharedBuffer& data) {
// At least kLongestSignatureLength bytes are needed to sniff the signature.
if (data.size() < kLongestSignatureLength) {
return false;
}
#if BUILDFLAG(ENABLE_AV1_DECODER)
{
// Check for an ISO BMFF File Type Box. Assume that 'largesize' is not used.
// The first eight bytes would be a big-endian 32-bit unsigned integer
// 'size' and a four-byte 'type'.
struct {
uint8_t size[4]; // unsigned int(32) size;
char type[4]; // unsigned int(32) type = boxtype;
} box;
static_assert(sizeof(box) == 8, "");
static_assert(8 <= kLongestSignatureLength, "");
bool ok = data.GetBytes(base::byte_span_from_ref(box));
DCHECK(ok);
if (base::span(box.type) == base::span<const char>({'f', 't', 'y', 'p'})) {
// Returns whether we have received the File Type Box in its entirety.
return base::U32FromBigEndian(box.size) <= data.size();
}
}
#endif
return true;
}
// static
String ImageDecoder::SniffMimeType(scoped_refptr<SharedBuffer> image_data) {
return SniffMimeTypeInternal(
SegmentReader::CreateFromSharedBuffer(std::move(image_data)));
}
// static
ImageDecoder::CompressionFormat ImageDecoder::GetCompressionFormat(
scoped_refptr<SharedBuffer> image_data,
String mime_type) {
// Attempt to sniff the image content to determine the true MIME type of the
// image, and fall back on the provided MIME type if this is not possible.
//
// Note that if the type cannot be sniffed AND the provided type is incorrect
// (for example, due to a misconfigured web server), then it is possible that
// the wrong compression format will be returned. However, this case should be
// exceedingly rare.
if (image_data && HasSufficientDataToSniffMimeType(*image_data.get())) {
mime_type = SniffMimeType(image_data);
}
if (!mime_type) {
return kUndefinedFormat;
}
// Attempt to sniff whether a WebP image is using a lossy or lossless
// compression algorithm. Note: Will return kWebPAnimationFormat in the case
// of an animated WebP image.
size_t available_data = image_data ? image_data->size() : 0;
if (EqualIgnoringASCIICase(mime_type, "image/webp") && available_data >= 16) {
// Attempt to sniff only 8 bytes (the second half of the first 16). This
// will be sufficient to determine lossy vs. lossless in most WebP images
// (all but the extended format).
const FastSharedBufferReader fast_reader(
SegmentReader::CreateFromSharedBuffer(image_data));
char buffer[8];
const unsigned char* contents = reinterpret_cast<const unsigned char*>(
fast_reader.GetConsecutiveData(8, 8, buffer));
if (!memcmp(contents, "WEBPVP8 ", 8)) {
// Simple lossy WebP format.
return kLossyFormat;
}
if (!memcmp(contents, "WEBPVP8L", 8)) {
// Simple Lossless WebP format.
return kLosslessFormat;
}
if (!memcmp(contents, "WEBPVP8X", 8)) {
// Extended WebP format; more content will need to be sniffed to make a
// determination.
auto long_buffer = base::HeapArray<char>::Uninit(available_data);
contents =
reinterpret_cast<const unsigned char*>(fast_reader.GetConsecutiveData(
0, available_data, long_buffer.data()));
WebPBitstreamFeatures webp_features{};
VP8StatusCode status =
WebPGetFeatures(contents, available_data, &webp_features);
// It is possible that there is not have enough image data available to
// make a determination.
if (status == VP8_STATUS_OK) {
DCHECK_LT(webp_features.format,
CompressionFormat::kWebPAnimationFormat);
return webp_features.has_animation
? CompressionFormat::kWebPAnimationFormat
: static_cast<CompressionFormat>(webp_features.format);
} else if (status != VP8_STATUS_NOT_ENOUGH_DATA) {
return kUndefinedFormat;
}
} else {
NOTREACHED();
}
}
#if BUILDFLAG(ENABLE_AV1_DECODER)
// Attempt to sniff whether an AVIF image is using a lossy or lossless
// compression algorithm.
// TODO(wtc): Implement this. Figure out whether to return kUndefinedFormat or
// a new kAVIFAnimationFormat in the case of an animated AVIF image.
if (EqualIgnoringASCIICase(mime_type, "image/avif")) {
return kLossyFormat;
}
#endif
if (IsLossyImageMIMEType(mime_type)) {
return kLossyFormat;
}
if (IsLosslessImageMIMEType(mime_type)) {
return kLosslessFormat;
}
return kUndefinedFormat;
}
bool ImageDecoder::IsSizeAvailable() {
if (failed_) {
return false;
}
if (!size_available_) {
DecodeSize();
}
if (!IsDecodedSizeAvailable()) {
return false;
}
#if BUILDFLAG(IS_FUCHSIA)
unsigned decoded_bytes_per_pixel = 4;
if (ImageIsHighBitDepth() &&
high_bit_depth_decoding_option_ == kHighBitDepthToHalfFloat) {
decoded_bytes_per_pixel = 8;
}
const gfx::Size size = DecodedSize();
const wtf_size_t decoded_size_bytes =
size.width() * size.height() * decoded_bytes_per_pixel;
if (decoded_size_bytes > max_decoded_bytes_) {
LOG(WARNING) << "Blocked decode of oversized image: " << size.width() << "x"
<< size.height();
return SetFailed();
}
#endif
return true;
}
gfx::Size ImageDecoder::Size() const {
return size_;
}
Vector<SkISize> ImageDecoder::GetSupportedDecodeSizes() const {
return {};
}
bool ImageDecoder::GetGainmapInfoAndData(
SkGainmapInfo& out_gainmap_info,
scoped_refptr<SegmentReader>& out_gainmap_data) const {
return false;
}
gfx::Size ImageDecoder::DecodedSize() const {
return Size();
}
cc::YUVSubsampling ImageDecoder::GetYUVSubsampling() const {
return cc::YUVSubsampling::kUnknown;
}
gfx::Size ImageDecoder::DecodedYUVSize(cc::YUVIndex) const {
NOTREACHED();
}
wtf_size_t ImageDecoder::DecodedYUVWidthBytes(cc::YUVIndex) const {
NOTREACHED();
}
SkYUVColorSpace ImageDecoder::GetYUVColorSpace() const {
NOTREACHED();
}
uint8_t ImageDecoder::GetYUVBitDepth() const {
return 8;
}
std::optional<gfx::HDRMetadata> ImageDecoder::GetHDRMetadata() const {
return std::nullopt;
}
bool ImageDecoder::HasC2PAManifest() const {
return false;
}
gfx::Size ImageDecoder::FrameSizeAtIndex(wtf_size_t) const {
return Size();
}
cc::ImageHeaderMetadata ImageDecoder::MakeMetadataForDecodeAcceleration()
const {
DCHECK(IsDecodedSizeAvailable());
cc::ImageHeaderMetadata image_metadata{};
image_metadata.image_type = FileExtensionToImageType(FilenameExtension());
image_metadata.yuv_subsampling = GetYUVSubsampling();
image_metadata.hdr_metadata = GetHDRMetadata();
image_metadata.image_size = size_;
image_metadata.has_embedded_color_profile = HasEmbeddedColorProfile();
return image_metadata;
}
bool ImageDecoder::SetSize(unsigned width, unsigned height) {
unsigned decoded_bytes_per_pixel = 4;
if (ImageIsHighBitDepth() &&
high_bit_depth_decoding_option_ == kHighBitDepthToHalfFloat) {
decoded_bytes_per_pixel = 8;
}
if (SizeCalculationMayOverflow(width, height, decoded_bytes_per_pixel)) {
return SetFailed();
}
size_ = gfx::Size(width, height);
size_available_ = true;
return true;
}
wtf_size_t ImageDecoder::FrameCount() {
const wtf_size_t old_size = frame_buffer_cache_.size();
const wtf_size_t new_size = DecodeFrameCount();
if (old_size != new_size) {
frame_buffer_cache_.resize(new_size);
for (wtf_size_t i = old_size; i < new_size; ++i) {
frame_buffer_cache_[i].SetPremultiplyAlpha(premultiply_alpha_);
InitializeNewFrame(i);
}
}
return new_size;
}
int ImageDecoder::RepetitionCount() const {
return kAnimationNone;
}
ImageFrame* ImageDecoder::DecodeFrameBufferAtIndex(wtf_size_t index) {
TRACE_EVENT0("blink", "ImageDecoder::DecodeFrameBufferAtIndex");
if (index >= FrameCount()) {
return nullptr;
}
ImageFrame* frame = &frame_buffer_cache_[index];
if (frame->GetStatus() != ImageFrame::kFrameComplete) {
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "Decode Image",
"imageType", FilenameExtension().Ascii());
Decode(index);
}
frame->NotifyBitmapIfPixelsChanged();
return frame;
}
bool ImageDecoder::FrameHasAlphaAtIndex(wtf_size_t index) const {
return !FrameIsReceivedAtIndex(index) ||
frame_buffer_cache_[index].HasAlpha();
}
bool ImageDecoder::FrameIsReceivedAtIndex(wtf_size_t index) const {
// Animated images override this method to return the status based on the data
// received for the queried frame.
return IsAllDataReceived();
}
bool ImageDecoder::FrameIsDecodedAtIndex(wtf_size_t index) const {
return index < frame_buffer_cache_.size() &&
frame_buffer_cache_[index].GetStatus() == ImageFrame::kFrameComplete;
}
std::optional<base::TimeDelta> ImageDecoder::FrameTimestampAtIndex(
wtf_size_t) const {
return std::nullopt;
}
base::TimeDelta ImageDecoder::FrameDurationAtIndex(wtf_size_t) const {
return base::TimeDelta();
}
wtf_size_t ImageDecoder::FrameBytesAtIndex(wtf_size_t index) const {
if (index >= frame_buffer_cache_.size() ||
frame_buffer_cache_[index].GetStatus() == ImageFrame::kFrameEmpty) {
return 0;
}
wtf_size_t decoded_bytes_per_pixel = 4;
if (frame_buffer_cache_[index].GetPixelFormat() ==
ImageFrame::PixelFormat::kRGBA_F16) {
decoded_bytes_per_pixel = 8;
}
gfx::Size size = FrameSizeAtIndex(index);
base::CheckedNumeric<wtf_size_t> area = size.width();
area *= size.height();
area *= decoded_bytes_per_pixel;
return area.ValueOrDie();
}
bool ImageDecoder::SetFailed() {
failed_ = true;
return false;
}
wtf_size_t ImageDecoder::ClearCacheExceptFrame(wtf_size_t clear_except_frame) {
// Don't clear if there are no frames or only one frame.
if (frame_buffer_cache_.size() <= 1) {
return 0;
}
// We expect that after this call, we'll be asked to decode frames after this
// one. So we want to avoid clearing frames such that those requests would
// force re-decoding from the beginning of the image. There are two cases in
// which preserving |clear_except_frame| is not enough to avoid that:
//
// 1. |clear_except_frame| is not yet sufficiently decoded to decode
// subsequent frames. We need the previous frame to sufficiently decode
// this frame.
// 2. The disposal method of |clear_except_frame| is DisposeOverwritePrevious.
// In that case, we need to keep the required previous frame in the cache
// to prevent re-decoding that frame when |clear_except_frame| is disposed.
//
// If either 1 or 2 is true, store the required previous frame in
// |clear_except_frame2| so it won't be cleared.
wtf_size_t clear_except_frame2 = kNotFound;
if (clear_except_frame < frame_buffer_cache_.size()) {
const ImageFrame& frame = frame_buffer_cache_[clear_except_frame];
if (!FrameStatusSufficientForSuccessors(clear_except_frame) ||
frame.GetDisposalMethod() == ImageFrame::kDisposeOverwritePrevious) {
clear_except_frame2 = frame.RequiredPreviousFrameIndex();
}
}
// Now |clear_except_frame2| indicates the frame that |clear_except_frame|
// depends on, as described above. But if decoding is skipping forward past
// intermediate frames, this frame may be insufficiently decoded. So we need
// to keep traversing back through the required previous frames until we find
// the nearest ancestor that is sufficiently decoded. Preserving that will
// minimize the amount of future decoding needed.
while (clear_except_frame2 < frame_buffer_cache_.size() &&
!FrameStatusSufficientForSuccessors(clear_except_frame2)) {
clear_except_frame2 =
frame_buffer_cache_[clear_except_frame2].RequiredPreviousFrameIndex();
}
return ClearCacheExceptTwoFrames(clear_except_frame, clear_except_frame2);
}
bool ImageDecoder::HotSpot(gfx::Point&) const {
return false;
}
void ImageDecoder::SetMemoryAllocator(SkBitmap::Allocator* allocator) {
// This currently doesn't work for images with multiple frames.
// Some animated image formats require extra guarantees:
// 1. The memory is cheaply readable, which isn't true for GPU memory, and
// 2. The memory's lifetime will persist long enough to allow reading past
// frames, which isn't true for discardable memory.
// Not all animated image formats share these requirements. Blocking
// all animated formats is overly aggressive. If a need arises for an
// external memory allocator for animated images, this should be changed.
if (frame_buffer_cache_.empty()) {
// Ensure that InitializeNewFrame is called, after parsing if
// necessary.
if (!FrameCount()) {
return;
}
}
frame_buffer_cache_[0].SetMemoryAllocator(allocator);
}
void ImageDecoder::DecodeToYUV() {
NOTREACHED();
}
bool ImageDecoder::ImageHasBothStillAndAnimatedSubImages() const {
return false;
}
wtf_size_t ImageDecoder::ClearCacheExceptTwoFrames(
wtf_size_t clear_except_frame1,
wtf_size_t clear_except_frame2) {
wtf_size_t frame_bytes_cleared = 0;
for (wtf_size_t i = 0; i < frame_buffer_cache_.size(); ++i) {
if (frame_buffer_cache_[i].GetStatus() != ImageFrame::kFrameEmpty &&
i != clear_except_frame1 && i != clear_except_frame2) {
frame_bytes_cleared += FrameBytesAtIndex(i);
ClearFrameBuffer(i);
}
}
return frame_bytes_cleared;
}
void ImageDecoder::ClearFrameBuffer(wtf_size_t frame_index) {
frame_buffer_cache_[frame_index].ClearPixelData();
}
wtf_size_t ImageDecoder::DecodeFrameCount() {
return 1;
}
Vector<wtf_size_t> ImageDecoder::FindFramesToDecode(wtf_size_t index) const {
DCHECK_LT(index, frame_buffer_cache_.size());
Vector<wtf_size_t> frames_to_decode;
do {
frames_to_decode.push_back(index);
index = frame_buffer_cache_[index].RequiredPreviousFrameIndex();
} while (index != kNotFound && frame_buffer_cache_[index].GetStatus() !=
ImageFrame::kFrameComplete);
return frames_to_decode;
}
bool ImageDecoder::PostDecodeProcessing(wtf_size_t index) {
DCHECK(index < frame_buffer_cache_.size());
if (frame_buffer_cache_[index].GetStatus() != ImageFrame::kFrameComplete) {
return false;
}
if (purge_aggressively_) {
ClearCacheExceptFrame(index);
}
return true;
}
void ImageDecoder::CorrectAlphaWhenFrameBufferSawNoAlpha(wtf_size_t index) {
DCHECK(index < frame_buffer_cache_.size());
ImageFrame& buffer = frame_buffer_cache_[index];
// When this frame spans the entire image rect we can SetHasAlpha to false,
// since there are logically no transparent pixels outside of the frame rect.
if (buffer.OriginalFrameRect().Contains(gfx::Rect(Size()))) {
buffer.SetHasAlpha(false);
buffer.SetRequiredPreviousFrameIndex(kNotFound);
} else if (buffer.RequiredPreviousFrameIndex() != kNotFound) {
// When the frame rect does not span the entire image rect, and it does
// *not* have a required previous frame, the pixels outside of the frame
// rect will be fully transparent, so we shoudn't SetHasAlpha to false.
//
// It is a tricky case when the frame does have a required previous frame.
// The frame does not have alpha only if everywhere outside its rect
// doesn't have alpha. To know whether this is true, we check the start
// state of the frame -- if it doesn't have alpha, we're safe.
//
// We first check that the required previous frame does not have
// DisposeOverWritePrevious as its disposal method - this should never
// happen, since the required frame should in that case be the required
// frame of this frame's required frame.
//
// If |prev_buffer| is DisposeNotSpecified or DisposeKeep, |buffer| has no
// alpha if |prev_buffer| had no alpha. Since InitFrameBuffer() already
// copied the alpha state, there's nothing to do here.
//
// The only remaining case is a DisposeOverwriteBgcolor frame. If
// it had no alpha, and its rect is contained in the current frame's
// rect, we know the current frame has no alpha.
//
// For DisposeNotSpecified, DisposeKeep and DisposeOverwriteBgcolor there
// is one situation that is not taken into account - when |prev_buffer|
// *does* have alpha, but only in the frame rect of |buffer|, we can still
// say that this frame has no alpha. However, to determine this, we
// potentially need to analyze all image pixels of |prev_buffer|, which is
// too computationally expensive.
const ImageFrame* prev_buffer =
&frame_buffer_cache_[buffer.RequiredPreviousFrameIndex()];
DCHECK(prev_buffer->GetDisposalMethod() !=
ImageFrame::kDisposeOverwritePrevious);
if ((prev_buffer->GetDisposalMethod() ==
ImageFrame::kDisposeOverwriteBgcolor) &&
!prev_buffer->HasAlpha() &&
buffer.OriginalFrameRect().Contains(prev_buffer->OriginalFrameRect())) {
buffer.SetHasAlpha(false);
}
}
}
bool ImageDecoder::InitFrameBuffer(wtf_size_t frame_index) {
DCHECK(frame_index < frame_buffer_cache_.size());
ImageFrame* const buffer = &frame_buffer_cache_[frame_index];
// If the frame is already initialized, return true.
if (buffer->GetStatus() != ImageFrame::kFrameEmpty) {
return true;
}
wtf_size_t required_previous_frame_index =
buffer->RequiredPreviousFrameIndex();
if (required_previous_frame_index == kNotFound) {
// This frame doesn't rely on any previous data.
if (!buffer->AllocatePixelData(Size().width(), Size().height(),
ColorSpaceForSkImages())) {
return false;
}
buffer->ZeroFillPixelData();
} else {
ImageFrame* const prev_buffer =
&frame_buffer_cache_[required_previous_frame_index];
DCHECK(prev_buffer->GetStatus() == ImageFrame::kFrameComplete);
// We try to reuse |prev_buffer| as starting state to avoid copying.
// If CanReusePreviousFrameBuffer returns false, we must copy the data since
// |prev_buffer| is necessary to decode this or later frames. In that case,
// copy the data instead.
if ((!CanReusePreviousFrameBuffer(frame_index) ||
!buffer->TakeBitmapDataIfWritable(prev_buffer)) &&
!buffer->CopyBitmapData(*prev_buffer)) {
return false;
}
if (prev_buffer->GetDisposalMethod() ==
ImageFrame::kDisposeOverwriteBgcolor) {
// We want to clear the previous frame to transparent, without
// affecting pixels in the image outside of the frame.
const gfx::Rect& prev_rect = prev_buffer->OriginalFrameRect();
DCHECK(!prev_rect.Contains(gfx::Rect(Size())));
buffer->ZeroFillFrameRect(prev_rect);
}
}
DCHECK_EQ(high_bit_depth_decoding_option_ == kHighBitDepthToHalfFloat &&
ImageIsHighBitDepth(),
buffer->GetPixelFormat() == ImageFrame::kRGBA_F16);
OnInitFrameBuffer(frame_index);
// Update our status to be partially complete.
buffer->SetStatus(ImageFrame::kFramePartial);
return true;
}
void ImageDecoder::UpdateAggressivePurging(wtf_size_t index) {
if (purge_aggressively_) {
return;
}
// We don't want to cache so much that we cause a memory issue.
//
// If we used a LRU cache we would fill it and then on next animation loop
// we would need to decode all the frames again -- the LRU would give no
// benefit and would consume more memory.
// So instead, simply purge unused frames if caching all of the frames of
// the image would use more memory than the image decoder is allowed
// (|max_decoded_bytes|) or would overflow 32 bits..
//
// As we decode we will learn the total number of frames, and thus total
// possible image memory used.
wtf_size_t decoded_bytes_per_pixel = 4;
if (frame_buffer_cache_.size() && frame_buffer_cache_[0].GetPixelFormat() ==
ImageFrame::PixelFormat::kRGBA_F16) {
decoded_bytes_per_pixel = 8;
}
const uint64_t frame_memory_usage =
DecodedSize().Area64() * decoded_bytes_per_pixel;
// This condition never fails in the current code. Our existing image decoders
// parse for the image size and SetFailed() if that size overflows
DCHECK_EQ(frame_memory_usage / decoded_bytes_per_pixel,
DecodedSize().Area64());
const uint64_t total_memory_usage = frame_memory_usage * index;
if (total_memory_usage / frame_memory_usage != index) { // overflow occurred
purge_aggressively_ = true;
return;
}
if (total_memory_usage > max_decoded_bytes_) {
purge_aggressively_ = true;
}
}
bool ImageDecoder::FrameStatusSufficientForSuccessors(wtf_size_t index) {
DCHECK(index < frame_buffer_cache_.size());
ImageFrame::Status frame_status = frame_buffer_cache_[index].GetStatus();
return frame_status == ImageFrame::kFramePartial ||
frame_status == ImageFrame::kFrameComplete;
}
wtf_size_t ImageDecoder::FindRequiredPreviousFrame(wtf_size_t frame_index,
bool frame_rect_is_opaque) {
DCHECK_LT(frame_index, frame_buffer_cache_.size());
if (!frame_index) {
// The first frame doesn't rely on any previous data.
return kNotFound;
}
const ImageFrame* curr_buffer = &frame_buffer_cache_[frame_index];
if ((frame_rect_is_opaque ||
curr_buffer->GetAlphaBlendSource() == ImageFrame::kBlendAtopBgcolor) &&
curr_buffer->OriginalFrameRect().Contains(gfx::Rect(Size()))) {
return kNotFound;
}
// The starting state for this frame depends on the previous frame's
// disposal method.
wtf_size_t prev_frame = frame_index - 1;
const ImageFrame* prev_buffer = &frame_buffer_cache_[prev_frame];
// Frames that use the DisposeOverwritePrevious method are effectively
// no-ops in terms of changing the starting state of a frame compared to
// the starting state of the previous frame, so skip over them.
while (prev_buffer->GetDisposalMethod() ==
ImageFrame::kDisposeOverwritePrevious) {
if (prev_frame == 0) {
return kNotFound;
}
prev_frame--;
prev_buffer = &frame_buffer_cache_[prev_frame];
}
switch (prev_buffer->GetDisposalMethod()) {
case ImageFrame::kDisposeNotSpecified:
case ImageFrame::kDisposeKeep:
// |prev_frame| will be used as the starting state for this frame.
// FIXME: Be even smarter by checking the frame sizes and/or
// alpha-containing regions.
return prev_frame;
case ImageFrame::kDisposeOverwriteBgcolor:
// If the previous frame fills the whole image, then the current frame
// can be decoded alone. Likewise, if the previous frame could be
// decoded without reference to any prior frame, the starting state for
// this frame is a blank frame, so it can again be decoded alone.
// Otherwise, the previous frame contributes to this frame.
return (prev_buffer->OriginalFrameRect().Contains(gfx::Rect(Size())) ||
(prev_buffer->RequiredPreviousFrameIndex() == kNotFound))
? kNotFound
: prev_frame;
case ImageFrame::kDisposeOverwritePrevious:
default:
NOTREACHED();
}
}
void ImageDecoder::ApplyExifMetadata(const SkData* exif_data,
const gfx::Size& physical_size) {
DCHECK(IsDecodedSizeAvailable());
SkExif::Metadata metadata;
SkExif::Parse(metadata, exif_data);
orientation_ = static_cast<ImageOrientationEnum>(
metadata.fOrigin.value_or(kTopLeft_SkEncodedOrigin));
density_corrected_size_ =
ExtractDensityCorrectedSize(metadata, physical_size);
}
ImagePlanes::ImagePlanes() {
std::ranges::fill(planes_, nullptr);
std::ranges::fill(row_bytes_, 0);
}
ImagePlanes::ImagePlanes(
base::span<void*, cc::kNumYUVPlanes> planes,
base::span<const wtf_size_t, cc::kNumYUVPlanes> row_bytes,
SkColorType color_type)
: color_type_(color_type) {
base::span(planes_).copy_from(planes);
base::span(row_bytes_).copy_from(row_bytes);
}
void* ImagePlanes::Plane(cc::YUVIndex index) {
return planes_[static_cast<wtf_size_t>(index)];
}
wtf_size_t ImagePlanes::RowBytes(cc::YUVIndex index) const {
return row_bytes_[static_cast<wtf_size_t>(index)];
}
ColorProfile::ColorProfile(const skcms_ICCProfile& profile,
base::HeapArray<uint8_t> buffer)
: profile_(profile), buffer_(std::move(buffer)) {}
ColorProfile::~ColorProfile() = default;
std::unique_ptr<ColorProfile> ColorProfile::Create(
base::span<const uint8_t> buffer) {
// After skcms_Parse, profile will have pointers into the passed buffer,
// so we need to copy first, then parse.
auto owned_buffer = base::HeapArray<uint8_t>::CopiedFrom(buffer);
skcms_ICCProfile profile;
if (skcms_Parse(owned_buffer.data(), owned_buffer.size(), &profile)) {
return std::make_unique<ColorProfile>(profile, std::move(owned_buffer));
}
return nullptr;
}
ColorProfileTransform::ColorProfileTransform(
const skcms_ICCProfile* src_profile,
const skcms_ICCProfile* dst_profile) {
DCHECK(src_profile);
DCHECK(dst_profile);
src_profile_ = src_profile;
dst_profile_ = *dst_profile;
}
const skcms_ICCProfile* ColorProfileTransform::SrcProfile() const {
return src_profile_;
}
const skcms_ICCProfile* ColorProfileTransform::DstProfile() const {
return &dst_profile_;
}
void ImageDecoder::SetEmbeddedColorProfile(
std::unique_ptr<ColorProfile> profile) {
DCHECK(!IgnoresColorSpace());
embedded_color_profile_ = std::move(profile);
sk_image_color_space_ = nullptr;
embedded_to_sk_image_transform_.reset();
}
ColorProfileTransform* ImageDecoder::ColorTransform() {
UpdateSkImageColorSpaceAndTransform();
return embedded_to_sk_image_transform_.get();
}
ColorProfileTransform::~ColorProfileTransform() = default;
sk_sp<SkColorSpace> ImageDecoder::ColorSpaceForSkImages() {
UpdateSkImageColorSpaceAndTransform();
return sk_image_color_space_;
}
void ImageDecoder::UpdateSkImageColorSpaceAndTransform() {
if (color_behavior_ == ColorBehavior::kIgnore) {
return;
}
// If `color_behavior_` is not ignore, then this function will always set
// `sk_image_color_space_` to something non-nullptr, so, if it is non-nullptr,
// then everything is up to date.
if (sk_image_color_space_) {
return;
}
if (color_behavior_ == ColorBehavior::kTag) {
// Set `sk_image_color_space_` to the best SkColorSpace approximation
// of `embedded_color_profile_`.
if (embedded_color_profile_) {
const skcms_ICCProfile* profile = embedded_color_profile_->GetProfile();
// If the ICC profile has CICP data, prefer to use that.
if (profile->has_CICP) {
sk_image_color_space_ =
skia::CICPGetSkColorSpace(profile->CICP.color_primaries,
profile->CICP.transfer_characteristics,
profile->CICP.matrix_coefficients,
profile->CICP.video_full_range_flag,
/*prefer_srgb_trfn=*/true);
// A CICP profile's SkColorSpace is considered an exact representation
// of `profile`, so don't create `embedded_to_sk_image_transform_`.
if (sk_image_color_space_) {
return;
}
}
// If there was not CICP data, then use the ICC profile.
DCHECK(!sk_image_color_space_);
sk_image_color_space_ = SkColorSpace::Make(*profile);
// If the embedded color space isn't supported by Skia, we will transform
// to a supported color space using `embedded_to_sk_image_transform_` at
// decode time.
if (!sk_image_color_space_ && profile->has_toXYZD50) {
// Preserve the gamut, but convert to a standard transfer function.
skcms_ICCProfile with_srgb = *profile;
skcms_SetTransferFunction(&with_srgb, skcms_sRGB_TransferFunction());
sk_image_color_space_ = SkColorSpace::Make(with_srgb);
}
// For color spaces without an identifiable gamut, just default to sRGB.
if (!sk_image_color_space_) {
sk_image_color_space_ = SkColorSpace::MakeSRGB();
}
} else {
// If there is no `embedded_color_profile_`, then assume that the content
// was sRGB (and `embedded_to_sk_image_transform_` is not needed).
sk_image_color_space_ = SkColorSpace::MakeSRGB();
return;
}
} else {
DCHECK(color_behavior_ == ColorBehavior::kTransformToSRGB);
sk_image_color_space_ = SkColorSpace::MakeSRGB();
// If there is no `embedded_color_profile_`, then assume the content was
// sRGB (and, as above, `embedded_to_sk_image_transform_` is not needed).
if (!embedded_color_profile_) {
return;
}
}
// If we arrive here then we may need to create a transform from
// `embedded_color_profile_` to `sk_image_color_space_`.
DCHECK(embedded_color_profile_);
DCHECK(sk_image_color_space_);
const skcms_ICCProfile* src_profile = embedded_color_profile_->GetProfile();
skcms_ICCProfile dst_profile;
sk_image_color_space_->toProfile(&dst_profile);
if (skcms_ApproximatelyEqualProfiles(src_profile, &dst_profile)) {
return;
}
embedded_to_sk_image_transform_ =
std::make_unique<ColorProfileTransform>(src_profile, &dst_profile);
}
bool ImageDecoder::CanReusePreviousFrameBuffer(wtf_size_t) const {
return false;
}
} // namespace blink
|