1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "third_party/blink/renderer/platform/image-decoders/image_decoder.h"
#include <memory>
#include "build/build_config.h"
#include "media/media_buildflags.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/blink/renderer/platform/image-decoders/image_frame.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
#include "third_party/blink/renderer/platform/wtf/vector.h"
namespace blink {
class TestImageDecoder : public ImageDecoder {
public:
explicit TestImageDecoder(
ImageDecoder::HighBitDepthDecodingOption high_bit_depth_decoding_option,
wtf_size_t max_decoded_bytes = kNoDecodedImageByteLimit)
: ImageDecoder(kAlphaNotPremultiplied,
high_bit_depth_decoding_option,
ColorBehavior::kTransformToSRGB,
cc::AuxImage::kDefault,
max_decoded_bytes) {}
TestImageDecoder() : TestImageDecoder(ImageDecoder::kDefaultBitDepth) {}
String FilenameExtension() const override { return ""; }
const AtomicString& MimeType() const override { return g_empty_atom; }
Vector<ImageFrame, 1>& FrameBufferCache() { return frame_buffer_cache_; }
void ResetRequiredPreviousFrames(bool known_opaque = false) {
for (size_t i = 0; i < frame_buffer_cache_.size(); ++i) {
frame_buffer_cache_[i].SetRequiredPreviousFrameIndex(
FindRequiredPreviousFrame(i, known_opaque));
}
}
void InitFrames(wtf_size_t num_frames,
unsigned width = 100,
unsigned height = 100) {
SetSize(width, height);
frame_buffer_cache_.resize(num_frames);
for (wtf_size_t i = 0; i < num_frames; ++i) {
frame_buffer_cache_[i].SetOriginalFrameRect(gfx::Rect(width, height));
}
}
bool ImageIsHighBitDepth() override { return image_is_high_bit_depth_; }
void SetImageToHighBitDepthForTest() { image_is_high_bit_depth_ = true; }
private:
bool image_is_high_bit_depth_ = false;
void DecodeSize() override {}
void Decode(wtf_size_t index) override {}
};
TEST(ImageDecoderTest, sizeCalculationMayOverflow) {
// Test coverage:
// Regular bit depth image with regular decoder
// Regular bit depth image with high bit depth decoder
// High bit depth image with regular decoder
// High bit depth image with high bit depth decoder
bool high_bit_depth_decoder_status[] = {false, true};
bool high_bit_depth_image_status[] = {false, true};
for (bool high_bit_depth_decoder : high_bit_depth_decoder_status) {
for (bool high_bit_depth_image : high_bit_depth_image_status) {
std::unique_ptr<TestImageDecoder> decoder;
if (high_bit_depth_decoder) {
decoder = std::make_unique<TestImageDecoder>(
ImageDecoder::kHighBitDepthToHalfFloat);
} else {
decoder = std::make_unique<TestImageDecoder>();
}
if (high_bit_depth_image) {
decoder->SetImageToHighBitDepthForTest();
}
unsigned log_pixel_size = 2; // pixel is 4 bytes
if (high_bit_depth_decoder && high_bit_depth_image) {
log_pixel_size = 3; // pixel is 8 byts
}
unsigned overflow_dim_shift = 31 - log_pixel_size;
unsigned overflow_dim_shift_half = (overflow_dim_shift + 1) / 2;
EXPECT_FALSE(decoder->SetSize(1 << overflow_dim_shift, 1));
EXPECT_FALSE(decoder->SetSize(1, 1 << overflow_dim_shift));
EXPECT_FALSE(decoder->SetSize(1 << overflow_dim_shift_half,
1 << overflow_dim_shift_half));
EXPECT_TRUE(decoder->SetSize(1 << (overflow_dim_shift - 1), 1));
EXPECT_TRUE(decoder->SetSize(1, 1 << (overflow_dim_shift - 1)));
EXPECT_TRUE(decoder->SetSize(1 << (overflow_dim_shift_half - 1),
1 << (overflow_dim_shift_half - 1)));
}
}
}
TEST(ImageDecoderTest, requiredPreviousFrameIndex) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(6);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
frame_buffers[1].SetDisposalMethod(ImageFrame::kDisposeKeep);
frame_buffers[2].SetDisposalMethod(ImageFrame::kDisposeOverwritePrevious);
frame_buffers[3].SetDisposalMethod(ImageFrame::kDisposeOverwritePrevious);
frame_buffers[4].SetDisposalMethod(ImageFrame::kDisposeKeep);
decoder->ResetRequiredPreviousFrames();
// The first frame doesn't require any previous frame.
EXPECT_EQ(kNotFound, frame_buffers[0].RequiredPreviousFrameIndex());
// The previous DisposeNotSpecified frame is required.
EXPECT_EQ(0u, frame_buffers[1].RequiredPreviousFrameIndex());
// DisposeKeep is treated as DisposeNotSpecified.
EXPECT_EQ(1u, frame_buffers[2].RequiredPreviousFrameIndex());
// Previous DisposeOverwritePrevious frames are skipped.
EXPECT_EQ(1u, frame_buffers[3].RequiredPreviousFrameIndex());
EXPECT_EQ(1u, frame_buffers[4].RequiredPreviousFrameIndex());
EXPECT_EQ(4u, frame_buffers[5].RequiredPreviousFrameIndex());
}
TEST(ImageDecoderTest, requiredPreviousFrameIndexDisposeOverwriteBgcolor) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(3);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
// Fully covering DisposeOverwriteBgcolor previous frame resets the starting
// state.
frame_buffers[1].SetDisposalMethod(ImageFrame::kDisposeOverwriteBgcolor);
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[2].RequiredPreviousFrameIndex());
// Partially covering DisposeOverwriteBgcolor previous frame is required by
// this frame.
frame_buffers[1].SetOriginalFrameRect(gfx::Rect(50, 50, 50, 50));
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(1u, frame_buffers[2].RequiredPreviousFrameIndex());
}
TEST(ImageDecoderTest, requiredPreviousFrameIndexForFrame1) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(2);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(0u, frame_buffers[1].RequiredPreviousFrameIndex());
// The first frame with DisposeOverwritePrevious or DisposeOverwriteBgcolor
// resets the starting state.
frame_buffers[0].SetDisposalMethod(ImageFrame::kDisposeOverwritePrevious);
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[1].RequiredPreviousFrameIndex());
frame_buffers[0].SetDisposalMethod(ImageFrame::kDisposeOverwriteBgcolor);
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[1].RequiredPreviousFrameIndex());
// ... even if it partially covers.
frame_buffers[0].SetOriginalFrameRect(gfx::Rect(50, 50, 50, 50));
frame_buffers[0].SetDisposalMethod(ImageFrame::kDisposeOverwritePrevious);
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[1].RequiredPreviousFrameIndex());
frame_buffers[0].SetDisposalMethod(ImageFrame::kDisposeOverwriteBgcolor);
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[1].RequiredPreviousFrameIndex());
}
TEST(ImageDecoderTest, requiredPreviousFrameIndexBlendAtopBgcolor) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(3);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
frame_buffers[1].SetOriginalFrameRect(gfx::Rect(25, 25, 50, 50));
frame_buffers[2].SetAlphaBlendSource(ImageFrame::kBlendAtopBgcolor);
// A full frame with 'blending method == BlendAtopBgcolor' doesn't depend on
// any prior frames.
for (int dispose_method = ImageFrame::kDisposeNotSpecified;
dispose_method <= ImageFrame::kDisposeOverwritePrevious;
++dispose_method) {
frame_buffers[1].SetDisposalMethod(
static_cast<ImageFrame::DisposalMethod>(dispose_method));
decoder->ResetRequiredPreviousFrames();
EXPECT_EQ(kNotFound, frame_buffers[2].RequiredPreviousFrameIndex());
}
// A non-full frame with 'blending method == BlendAtopBgcolor' does depend on
// a prior frame.
frame_buffers[2].SetOriginalFrameRect(gfx::Rect(50, 50, 50, 50));
for (int dispose_method = ImageFrame::kDisposeNotSpecified;
dispose_method <= ImageFrame::kDisposeOverwritePrevious;
++dispose_method) {
frame_buffers[1].SetDisposalMethod(
static_cast<ImageFrame::DisposalMethod>(dispose_method));
decoder->ResetRequiredPreviousFrames();
EXPECT_NE(kNotFound, frame_buffers[2].RequiredPreviousFrameIndex());
}
}
TEST(ImageDecoderTest, requiredPreviousFrameIndexKnownOpaque) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(3);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
frame_buffers[1].SetOriginalFrameRect(gfx::Rect(25, 25, 50, 50));
// A full frame that is known to be opaque doesn't depend on any prior frames.
for (int dispose_method = ImageFrame::kDisposeNotSpecified;
dispose_method <= ImageFrame::kDisposeOverwritePrevious;
++dispose_method) {
frame_buffers[1].SetDisposalMethod(
static_cast<ImageFrame::DisposalMethod>(dispose_method));
decoder->ResetRequiredPreviousFrames(true);
EXPECT_EQ(kNotFound, frame_buffers[2].RequiredPreviousFrameIndex());
}
// A non-full frame that is known to be opaque does depend on a prior frame.
frame_buffers[2].SetOriginalFrameRect(gfx::Rect(50, 50, 50, 50));
for (int dispose_method = ImageFrame::kDisposeNotSpecified;
dispose_method <= ImageFrame::kDisposeOverwritePrevious;
++dispose_method) {
frame_buffers[1].SetDisposalMethod(
static_cast<ImageFrame::DisposalMethod>(dispose_method));
decoder->ResetRequiredPreviousFrames(true);
EXPECT_NE(kNotFound, frame_buffers[2].RequiredPreviousFrameIndex());
}
}
TEST(ImageDecoderTest, clearCacheExceptFrameDoNothing) {
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->ClearCacheExceptFrame(0);
// This should not crash.
decoder->InitFrames(20);
decoder->ClearCacheExceptFrame(kNotFound);
}
TEST(ImageDecoderTest, clearCacheExceptFrameAll) {
const size_t kNumFrames = 10;
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(kNumFrames);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
for (size_t i = 0; i < kNumFrames; ++i) {
frame_buffers[i].SetStatus(i % 2 ? ImageFrame::kFramePartial
: ImageFrame::kFrameComplete);
}
decoder->ClearCacheExceptFrame(kNotFound);
for (size_t i = 0; i < kNumFrames; ++i) {
SCOPED_TRACE(testing::Message() << i);
EXPECT_EQ(ImageFrame::kFrameEmpty, frame_buffers[i].GetStatus());
}
}
TEST(ImageDecoderTest, clearCacheExceptFramePreverveClearExceptFrame) {
const wtf_size_t kNumFrames = 10;
std::unique_ptr<TestImageDecoder> decoder(
std::make_unique<TestImageDecoder>());
decoder->InitFrames(kNumFrames);
Vector<ImageFrame, 1>& frame_buffers = decoder->FrameBufferCache();
for (size_t i = 0; i < kNumFrames; ++i) {
frame_buffers[i].SetStatus(ImageFrame::kFrameComplete);
}
decoder->ResetRequiredPreviousFrames();
decoder->ClearCacheExceptFrame(5);
for (wtf_size_t i = 0; i < kNumFrames; ++i) {
SCOPED_TRACE(testing::Message() << i);
if (i == 5) {
EXPECT_EQ(ImageFrame::kFrameComplete, frame_buffers[i].GetStatus());
} else {
EXPECT_EQ(ImageFrame::kFrameEmpty, frame_buffers[i].GetStatus());
}
}
}
#if BUILDFLAG(IS_FUCHSIA)
TEST(ImageDecoderTest, decodedSizeLimitBoundary) {
constexpr unsigned kWidth = 100;
constexpr unsigned kHeight = 200;
constexpr unsigned kBitDepth = 4;
std::unique_ptr<TestImageDecoder> decoder(std::make_unique<TestImageDecoder>(
ImageDecoder::kDefaultBitDepth, (kWidth * kHeight * kBitDepth)));
// Smallest allowable size, should succeed.
EXPECT_TRUE(decoder->SetSize(1, 1));
EXPECT_TRUE(decoder->IsSizeAvailable());
EXPECT_FALSE(decoder->Failed());
// At the limit, should succeed.
EXPECT_TRUE(decoder->SetSize(kWidth, kHeight));
EXPECT_TRUE(decoder->IsSizeAvailable());
EXPECT_FALSE(decoder->Failed());
// Just over the limit, should fail.
EXPECT_TRUE(decoder->SetSize(kWidth + 1, kHeight));
EXPECT_FALSE(decoder->IsSizeAvailable());
EXPECT_TRUE(decoder->Failed());
}
TEST(ImageDecoderTest, decodedSizeUnlimited) {
// Very large values for width and height should be OK.
constexpr unsigned kWidth = 10000;
constexpr unsigned kHeight = 10000;
std::unique_ptr<TestImageDecoder> decoder(std::make_unique<TestImageDecoder>(
ImageDecoder::kDefaultBitDepth, ImageDecoder::kNoDecodedImageByteLimit));
EXPECT_TRUE(decoder->SetSize(kWidth, kHeight));
EXPECT_TRUE(decoder->IsSizeAvailable());
EXPECT_FALSE(decoder->Failed());
}
#else
// The limit is currently ignored on non-Fuchsia platforms (except for
// JPEG, which would decode a down-sampled version).
TEST(ImageDecoderTest, decodedSizeLimitIsIgnored) {
constexpr unsigned kWidth = 100;
constexpr unsigned kHeight = 200;
constexpr unsigned kBitDepth = 4;
std::unique_ptr<TestImageDecoder> decoder(std::make_unique<TestImageDecoder>(
ImageDecoder::kDefaultBitDepth, (kWidth * kHeight * kBitDepth)));
// Just over the limit. The limit should be ignored.
EXPECT_TRUE(decoder->SetSize(kWidth + 1, kHeight));
EXPECT_TRUE(decoder->IsSizeAvailable());
EXPECT_FALSE(decoder->Failed());
}
#endif // BUILDFLAG(IS_FUCHSIA)
#if BUILDFLAG(ENABLE_AV1_DECODER)
TEST(ImageDecoderTest, hasSufficientDataToSniffMimeTypeAvif) {
// The first 36 bytes of the Netflix AVIF test image
// Chimera-AV1-10bit-1280x720-2380kbps-100.avif. Since the major_brand is
// not "avif" or "avis", we must parse the compatible_brands to determine if
// this is an AVIF image.
constexpr uint8_t kData[] = {
// A File Type Box.
0x00, 0x00, 0x00, 0x1c, // unsigned int(32) size; 0x1c = 28
'f', 't', 'y', 'p', // unsigned int(32) type = boxtype;
'm', 'i', 'f', '1', // unsigned int(32) major_brand;
0x00, 0x00, 0x00, 0x00, // unsigned int(32) minor_version;
'm', 'i', 'f', '1', // unsigned int(32) compatible_brands[];
'a', 'v', 'i', 'f', //
'm', 'i', 'a', 'f', //
// The beginning of a Media Data Box.
0x00, 0x00, 0xa4, 0x3a, // unsigned int(32) size;
'm', 'd', 'a', 't' // unsigned int(32) type = boxtype;
};
scoped_refptr<SharedBuffer> buffer =
SharedBuffer::Create(base::span(kData).first(8u));
EXPECT_FALSE(ImageDecoder::HasSufficientDataToSniffMimeType(*buffer));
EXPECT_EQ(ImageDecoder::SniffMimeType(buffer), String());
buffer->Append(base::span(kData).subspan(8u, 8u));
EXPECT_FALSE(ImageDecoder::HasSufficientDataToSniffMimeType(*buffer));
EXPECT_EQ(ImageDecoder::SniffMimeType(buffer), String());
buffer->Append(base::span(kData).subspan(16u));
EXPECT_TRUE(ImageDecoder::HasSufficientDataToSniffMimeType(*buffer));
EXPECT_EQ(ImageDecoder::SniffMimeType(buffer), "image/avif");
}
#endif // BUILDFLAG(ENABLE_AV1_DECODER)
} // namespace blink
|