1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
* 2010 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/platform/transforms/affine_transform.h"
#include "third_party/blink/renderer/platform/wtf/math_extras.h"
#include "third_party/blink/renderer/platform/wtf/text/strcat.h"
#include "third_party/blink/renderer/platform/wtf/text/wtf_string.h"
#include "third_party/skia/include/core/SkM44.h"
#include "third_party/skia/include/core/SkMatrix.h"
#include "ui/gfx/geometry/decomposed_transform.h"
#include "ui/gfx/geometry/point.h"
#include "ui/gfx/geometry/point_conversions.h"
#include "ui/gfx/geometry/point_f.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/transform.h"
namespace blink {
double AffineTransform::XScaleSquared() const {
return transform_[0] * transform_[0] + transform_[1] * transform_[1];
}
double AffineTransform::XScale() const {
return sqrt(XScaleSquared());
}
double AffineTransform::YScaleSquared() const {
return transform_[2] * transform_[2] + transform_[3] * transform_[3];
}
double AffineTransform::YScale() const {
return sqrt(YScaleSquared());
}
double AffineTransform::Det() const {
return transform_[0] * transform_[3] - transform_[1] * transform_[2];
}
bool AffineTransform::IsInvertible() const {
return std::isnormal(Det());
}
AffineTransform AffineTransform::Inverse() const {
AffineTransform result;
if (IsIdentityOrTranslation()) {
result.transform_[4] = -transform_[4];
result.transform_[5] = -transform_[5];
return result;
}
double determinant = Det();
if (!std::isnormal(determinant))
return result;
result.transform_[0] = transform_[3] / determinant;
result.transform_[1] = -transform_[1] / determinant;
result.transform_[2] = -transform_[2] / determinant;
result.transform_[3] = transform_[0] / determinant;
result.transform_[4] =
(transform_[2] * transform_[5] - transform_[3] * transform_[4]) /
determinant;
result.transform_[5] =
(transform_[1] * transform_[4] - transform_[0] * transform_[5]) /
determinant;
return result;
}
namespace {
inline AffineTransform DoMultiply(const AffineTransform& t1,
const AffineTransform& t2) {
if (t1.IsIdentityOrTranslation()) {
return AffineTransform(t2.A(), t2.B(), t2.C(), t2.D(), t1.E() + t2.E(),
t1.F() + t2.F());
}
return AffineTransform(
t1.A() * t2.A() + t1.C() * t2.B(), t1.B() * t2.A() + t1.D() * t2.B(),
t1.A() * t2.C() + t1.C() * t2.D(), t1.B() * t2.C() + t1.D() * t2.D(),
t1.A() * t2.E() + t1.C() * t2.F() + t1.E(),
t1.B() * t2.E() + t1.D() * t2.F() + t1.F());
}
} // anonymous namespace
AffineTransform& AffineTransform::PreConcat(const AffineTransform& other) {
*this = DoMultiply(*this, other);
return *this;
}
AffineTransform& AffineTransform::PostConcat(const AffineTransform& other) {
*this = DoMultiply(other, *this);
return *this;
}
AffineTransform& AffineTransform::Rotate(double a) {
// angle is in degree. Switch to radian
return RotateRadians(Deg2rad(a));
}
AffineTransform& AffineTransform::RotateRadians(double a) {
double cos_angle = cos(a);
double sin_angle = sin(a);
AffineTransform rot(cos_angle, sin_angle, -sin_angle, cos_angle, 0, 0);
PreConcat(rot);
return *this;
}
AffineTransform& AffineTransform::Scale(double s) {
return Scale(s, s);
}
AffineTransform& AffineTransform::Scale(double sx, double sy) {
transform_[0] *= sx;
transform_[1] *= sx;
transform_[2] *= sy;
transform_[3] *= sy;
return *this;
}
// *this = *this * translation
AffineTransform& AffineTransform::Translate(double tx, double ty) {
transform_[4] += tx * transform_[0] + ty * transform_[2];
transform_[5] += tx * transform_[1] + ty * transform_[3];
return *this;
}
AffineTransform& AffineTransform::ScaleNonUniform(double sx, double sy) {
return Scale(sx, sy);
}
AffineTransform& AffineTransform::RotateFromVector(double x, double y) {
return RotateRadians(atan2(y, x));
}
AffineTransform& AffineTransform::FlipX() {
return Scale(-1, 1);
}
AffineTransform& AffineTransform::FlipY() {
return Scale(1, -1);
}
AffineTransform& AffineTransform::Shear(double sx, double sy) {
double a = transform_[0];
double b = transform_[1];
transform_[0] += sy * transform_[2];
transform_[1] += sy * transform_[3];
transform_[2] += sx * a;
transform_[3] += sx * b;
return *this;
}
AffineTransform& AffineTransform::Skew(double angle_x, double angle_y) {
return Shear(tan(Deg2rad(angle_x)), tan(Deg2rad(angle_y)));
}
AffineTransform& AffineTransform::SkewX(double angle) {
return Shear(tan(Deg2rad(angle)), 0);
}
AffineTransform& AffineTransform::SkewY(double angle) {
return Shear(0, tan(Deg2rad(angle)));
}
gfx::PointF AffineTransform::MapPoint(const gfx::PointF& point) const {
return gfx::PointF(ClampToFloat(transform_[0] * point.x() +
transform_[2] * point.y() + transform_[4]),
ClampToFloat(transform_[1] * point.x() +
transform_[3] * point.y() + transform_[5]));
}
gfx::Rect AffineTransform::MapRect(const gfx::Rect& rect) const {
return gfx::ToEnclosingRect(MapRect(gfx::RectF(rect)));
}
gfx::RectF AffineTransform::MapRect(const gfx::RectF& rect) const {
auto result = IsIdentityOrTranslation()
? gfx::RectF(MapPoint(rect.origin()), rect.size())
: MapQuad(gfx::QuadF(rect)).BoundingBox();
// result.width()/height() may be infinity if e.g. right - left > float_max.
DCHECK(std::isfinite(result.x()));
DCHECK(std::isfinite(result.y()));
result.set_width(ClampToFloat(result.width()));
result.set_height(ClampToFloat(result.height()));
return result;
}
gfx::QuadF AffineTransform::MapQuad(const gfx::QuadF& q) const {
return gfx::QuadF(MapPoint(q.p1()), MapPoint(q.p2()), MapPoint(q.p3()),
MapPoint(q.p4()));
}
// static
AffineTransform AffineTransform::FromTransform(const gfx::Transform& t) {
return AffineTransform(t.rc(0, 0), t.rc(1, 0), t.rc(0, 1), t.rc(1, 1),
t.rc(0, 3), t.rc(1, 3));
}
gfx::Transform AffineTransform::ToTransform() const {
return gfx::Transform::Affine(A(), B(), C(), D(), E(), F());
}
SkMatrix AffineTransform::ToSkMatrix() const {
// SkMatrices are 3x3, so they have a concept of "perspective" in the bottom
// row. AffineTransform is a 2x3 matrix that can encode 2d rotations, skew
// and translation, but has no perspective. Those parameters are set to zero
// here. i.e.:
//
// INPUT OUTPUT
// | a c e | | a c e |
// | b d f | ----> | b d f |
// | 0 0 1 |
SkMatrix result;
result.setScaleX(ClampToFloat(A()));
result.setSkewX(ClampToFloat(C()));
result.setTranslateX(ClampToFloat(E()));
result.setScaleY(ClampToFloat(D()));
result.setSkewY(ClampToFloat(B()));
result.setTranslateY(ClampToFloat(F()));
result.setPerspX(0);
result.setPerspY(0);
result.set(SkMatrix::kMPersp2, SK_Scalar1);
return result;
}
SkM44 AffineTransform::ToSkM44() const {
// INPUT OUTPUT
// | a c e | | a c 0 e |
// | b d f | ----> | b d 0 f |
// | 0 0 1 0 |
// | 0 0 0 1 |
SkScalar a = ClampToFloat(A());
SkScalar b = ClampToFloat(B());
SkScalar c = ClampToFloat(C());
SkScalar d = ClampToFloat(D());
SkScalar e = ClampToFloat(E());
SkScalar f = ClampToFloat(F());
return SkM44(a, c, 0, e, // row 0
b, d, 0, f, // row 1
0, 0, 1, 0, // row 2
0, 0, 0, 1); // row 3
}
AffineTransform& AffineTransform::Zoom(double zoom_factor) {
transform_[4] *= zoom_factor;
transform_[5] *= zoom_factor;
return *this;
}
String AffineTransform::ToString(bool as_matrix) const {
if (as_matrix) {
// Return as a matrix in row-major order.
return String::Format("[%lg,%lg,%lg,\n%lg,%lg,%lg]", A(), C(), E(), B(),
D(), F());
}
if (IsIdentity())
return "identity";
std::optional<gfx::DecomposedTransform> decomp = ToTransform().Decompose();
if (!decomp)
return WTF::StrCat({ToString(true), " (degenerate)"});
if (IsIdentityOrTranslation()) {
return String::Format("translation(%lg,%lg)", decomp->translate[0],
decomp->translate[1]);
}
double angle = Rad2deg(std::asin(decomp->quaternion.z())) * 2;
return String::Format(
"translation(%lg,%lg), scale(%lg,%lg), angle(%lgdeg), skewxy(%lg)",
decomp->translate[0], decomp->translate[1], decomp->scale[0],
decomp->scale[1], angle, decomp->skew[0]);
}
std::ostream& operator<<(std::ostream& ostream,
const AffineTransform& transform) {
return ostream << transform.ToString();
}
} // namespace blink
|