File: transform_operations.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (540 lines) | stat: -rw-r--r-- 20,391 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
/*
 * Copyright (C) 1999 Antti Koivisto (koivisto@kde.org)
 * Copyright (C) 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#include "third_party/blink/renderer/platform/transforms/transform_operations.h"

#include <algorithm>
#include <array>

#include "base/compiler_specific.h"
#include "base/containers/span.h"
#include "third_party/blink/renderer/platform/geometry/blend.h"
#include "third_party/blink/renderer/platform/transforms/interpolated_transform_operation.h"
#include "third_party/blink/renderer/platform/transforms/matrix_3d_transform_operation.h"
#include "third_party/blink/renderer/platform/transforms/rotate_transform_operation.h"
#include "third_party/blink/renderer/platform/wtf/functional.h"
#include "ui/gfx/geometry/box_f.h"

namespace blink {

namespace {
using ApplyCallback =
    base::RepeatingCallback<TransformOperation*(TransformOperation* from,
                                                TransformOperation* to)>;

// Applies a given function (|ApplyCallback|) to matching pairs of operations.
TransformOperations ApplyFunctionToMatchingPrefix(
    ApplyCallback apply_cb,
    const TransformOperations& from,
    const TransformOperations& to,
    wtf_size_t matching_prefix_length,
    bool* success) {
  TransformOperations result;
  wtf_size_t from_size = from.Operations().size();
  wtf_size_t to_size = to.Operations().size();

  // If the lists matched entirely but one was shorter, |matching_prefix_length|
  // will be the length of the longer list and we implicitly consider the
  // missing functions to be matching identity operations.
  DCHECK(matching_prefix_length <= std::max(from_size, to_size));

  for (wtf_size_t i = 0; i < matching_prefix_length; i++) {
    TransformOperation* from_operation =
        (i < from_size) ? from.Operations()[i].Get() : nullptr;
    TransformOperation* to_operation =
        (i < to_size) ? to.Operations()[i].Get() : nullptr;

    TransformOperation* result_operation =
        apply_cb.Run(from_operation, to_operation);

    if (result_operation) {
      result.Operations().push_back(result_operation);
    } else {
      *success = false;
      return result;
    }
  }
  return result;
}
}  // namespace

bool TransformOperations::operator==(const TransformOperations& o) const {
  if (operations_.size() != o.operations_.size())
    return false;

  wtf_size_t s = operations_.size();
  for (wtf_size_t i = 0; i < s; i++) {
    if (*operations_[i] != *o.operations_[i])
      return false;
  }

  return true;
}

void TransformOperations::ApplyRemaining(const gfx::SizeF& border_box_size,
                                         wtf_size_t start,
                                         gfx::Transform& t) const {
  for (wtf_size_t i = start; i < operations_.size(); i++) {
    operations_[i]->Apply(t, border_box_size);
  }
}

TransformOperation::BoxSizeDependency TransformOperations::BoxSizeDependencies(
    wtf_size_t start) const {
  TransformOperation::BoxSizeDependency deps = TransformOperation::kDependsNone;
  for (wtf_size_t i = start; i < operations_.size(); i++) {
    deps = TransformOperation::CombineDependencies(
        deps, operations_[i]->BoxSizeDependencies());
  }
  return deps;
}

wtf_size_t TransformOperations::MatchingPrefixLength(
    const TransformOperations& other) const {
  wtf_size_t num_operations =
      std::min(Operations().size(), other.Operations().size());
  for (wtf_size_t i = 0; i < num_operations; ++i) {
    if (!Operations()[i]->CanBlendWith(*other.Operations()[i])) {
      // Remaining operations in each operations list require merging for
      // matrix/matrix3d interpolation.
      return i;
    }
  }
  // If the operations match to the length of the shorter list, then pad its
  // length with the matching identity operations.
  // https://drafts.csswg.org/css-transforms/#transform-function-lists
  return std::max(Operations().size(), other.Operations().size());
}

TransformOperation*
TransformOperations::BlendRemainingByUsingMatrixInterpolation(
    const TransformOperations& from,
    wtf_size_t matching_prefix_length,
    double progress,
    BoxSizeDependentMatrixBlending box_size_dependent) const {
  // Not safe to use a cached transform if any of the operations are size
  // dependent.
  if (BoxSizeDependencies(matching_prefix_length) ||
      from.BoxSizeDependencies(matching_prefix_length)) {
    if (box_size_dependent == BoxSizeDependentMatrixBlending::kDisallow) {
      return nullptr;
    }
    return MakeGarbageCollected<InterpolatedTransformOperation>(
        from, *this, matching_prefix_length, progress);
  }

  // Evaluate blended matrix here to avoid creating a nested data structure of
  // unbounded depth.
  gfx::Transform from_transform;
  gfx::Transform to_transform;
  from.ApplyRemaining(gfx::SizeF(), matching_prefix_length, from_transform);
  ApplyRemaining(gfx::SizeF(), matching_prefix_length, to_transform);

  // Fallback to discrete interpolation if either transform matrix is singular.
  if (!(from_transform.IsInvertible() && to_transform.IsInvertible())) {
    return nullptr;
  }

  if (!to_transform.Blend(from_transform, progress) && progress < 0.5)
    to_transform = from_transform;

  return MakeGarbageCollected<Matrix3DTransformOperation>(to_transform);
}

// https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
// TODO(crbug.com/914397): Consolidate blink and cc implementations of transform
// interpolation.
TransformOperations TransformOperations::Blend(
    const TransformOperations& from,
    double progress,
    BoxSizeDependentMatrixBlending box_size_dependent) const {
  if (from == *this || (!from.size() && !size()))
    return *this;

  wtf_size_t matching_prefix_length = MatchingPrefixLength(from);
  wtf_size_t max_path_length =
      std::max(Operations().size(), from.Operations().size());

  bool success = true;
  TransformOperations result = ApplyFunctionToMatchingPrefix(
      WTF::BindRepeating(
          [](double progress, TransformOperation* from,
             TransformOperation* to) {
            // Where the lists matched but one was longer, the shorter list is
            // padded with nullptr that represent matching identity operations.
            return to ? to->Blend(from, progress)
                      : (from ? from->Blend(nullptr, progress, true) : nullptr);
          },
          progress),
      from, *this, matching_prefix_length, &success);
  if (success && matching_prefix_length < max_path_length) {
    TransformOperation* matrix_op = BlendRemainingByUsingMatrixInterpolation(
        from, matching_prefix_length, progress, box_size_dependent);
    if (matrix_op)
      result.Operations().push_back(matrix_op);
    else
      success = false;
  }
  if (!success) {
    return progress < 0.5 ? from : *this;
  }
  return result;
}

TransformOperations TransformOperations::Accumulate(
    const TransformOperations& to) const {
  if (!to.size() && !size())
    return *this;

  bool success = true;
  wtf_size_t matching_prefix_length = MatchingPrefixLength(to);
  wtf_size_t max_path_length =
      std::max(Operations().size(), to.Operations().size());

  // Accumulate matching pairs of transform functions.
  TransformOperations result = ApplyFunctionToMatchingPrefix(
      WTF::BindRepeating([](TransformOperation* from, TransformOperation* to) {
        if (to && from)
          return from->Accumulate(*to);
        // Where the lists matched but one was longer, the shorter list is
        // padded with nullptr that represent matching identity operations. For
        // any function, accumulate(f, identity) == f, so just return f.
        return to ? to : from;
      }),
      *this, to, matching_prefix_length, &success);

  // Then, if there are leftover non-matching functions, accumulate the
  // remaining matrices.
  if (success && matching_prefix_length < max_path_length) {
    gfx::Transform from_transform;
    gfx::Transform to_transform;
    ApplyRemaining(gfx::SizeF(), matching_prefix_length, from_transform);
    to.ApplyRemaining(gfx::SizeF(), matching_prefix_length, to_transform);

    TransformOperation* from_matrix =
        MakeGarbageCollected<Matrix3DTransformOperation>(from_transform);
    TransformOperation* to_matrix =
        MakeGarbageCollected<Matrix3DTransformOperation>(to_transform);
    TransformOperation* matrix_op = from_matrix->Accumulate(*to_matrix);

    if (matrix_op)
      result.Operations().push_back(matrix_op);
    else
      success = false;
  }

  // On failure, behavior is to replace.
  return success ? result : to;
}

static void FindCandidatesInPlane(double px,
                                  double py,
                                  double nz,
                                  base::span<double> candidates,
                                  int* num_candidates) {
  // The angle that this point is rotated with respect to the plane nz
  double phi = atan2(px, py);

  *num_candidates = 4;
  candidates[0] = phi;  // The element at 0deg (maximum x)

  for (int i = 1; i < *num_candidates; ++i)
    UNSAFE_TODO(candidates[i] = candidates[i - 1] + M_PI_2);  // every 90 deg
  if (nz < 0.f) {
    for (int i = 0; i < *num_candidates; ++i)
      UNSAFE_TODO(candidates[i] *= -1);
  }
}

// This method returns the bounding box that contains the starting point,
// the ending point, and any of the extrema (in each dimension) found across
// the circle described by the arc. These are then filtered to points that
// actually reside on the arc.
static void BoundingBoxForArc(const gfx::Point3F& point,
                              const RotateTransformOperation& from_transform,
                              const RotateTransformOperation& to_transform,
                              double min_progress,
                              double max_progress,
                              gfx::BoxF& box) {
  std::array<double, 6> candidates;
  int num_candidates = 0;

  gfx::Vector3dF axis = from_transform.Axis();
  double from_degrees = from_transform.Angle();
  double to_degrees = to_transform.Angle();

  if (gfx::DotProduct(axis, to_transform.Axis()) < 0)
    to_degrees *= -1;

  from_degrees = Blend(from_degrees, to_degrees, min_progress);
  to_degrees = Blend(to_degrees, from_transform.Angle(), 1.0 - max_progress);
  if (from_degrees > to_degrees)
    std::swap(from_degrees, to_degrees);

  gfx::Transform from_matrix;
  gfx::Transform to_matrix;
  from_matrix.RotateAbout(from_transform.Axis(), from_degrees);
  to_matrix.RotateAbout(from_transform.Axis(), to_degrees);

  gfx::Point3F from_point = from_matrix.MapPoint(point);

  if (box.IsEmpty())
    box.set_origin(from_point);
  else
    box.ExpandTo(from_point);

  box.ExpandTo(to_matrix.MapPoint(point));

  switch (from_transform.GetType()) {
    case TransformOperation::kRotateX:
      FindCandidatesInPlane(point.y(), point.z(), from_transform.X(),
                            candidates, &num_candidates);
      break;
    case TransformOperation::kRotateY:
      FindCandidatesInPlane(point.z(), point.x(), from_transform.Y(),
                            candidates, &num_candidates);
      break;
    case TransformOperation::kRotateZ:
    case TransformOperation::kRotate:
      FindCandidatesInPlane(point.x(), point.y(), from_transform.Z(),
                            candidates, &num_candidates);
      break;
    default: {
      gfx::Vector3dF normal;
      if (!axis.GetNormalized(&normal))
        return;
      gfx::Vector3dF to_point = point.OffsetFromOrigin();
      gfx::Point3F center = gfx::PointAtOffsetFromOrigin(
          gfx::ScaleVector3d(normal, gfx::DotProduct(to_point, normal)));
      gfx::Vector3dF v1 = point - center;
      if (!v1.GetNormalized(&v1))
        return;

      gfx::Vector3dF v2 = gfx::CrossProduct(normal, v1);
      // v1 is the basis vector in the direction of the point.
      // i.e. with a rotation of 0, v1 is our +x vector.
      // v2 is a perpenticular basis vector of our plane (+y).

      // Take the parametric equation of a circle.
      // (x = r*cos(t); y = r*sin(t);
      // We can treat that as a circle on the plane v1xv2
      // From that we get the parametric equations for a circle on the
      // plane in 3d space of
      // x(t) = r*cos(t)*v1.x + r*sin(t)*v2.x + cx
      // y(t) = r*cos(t)*v1.y + r*sin(t)*v2.y + cy
      // z(t) = r*cos(t)*v1.z + r*sin(t)*v2.z + cz
      // taking the derivative of (x, y, z) and solving for 0 gives us our
      // maximum/minimum x, y, z values
      // x'(t) = r*cos(t)*v2.x - r*sin(t)*v1.x = 0
      // tan(t) = v2.x/v1.x
      // t = atan2(v2.x, v1.x) + n*M_PI;

      candidates[0] = atan2(v2.x(), v1.x());
      candidates[1] = candidates[0] + M_PI;
      candidates[2] = atan2(v2.y(), v1.y());
      candidates[3] = candidates[2] + M_PI;
      candidates[4] = atan2(v2.z(), v1.z());
      candidates[5] = candidates[4] + M_PI;
      num_candidates = 6;
    } break;
  }

  double min_radians = Deg2rad(from_degrees);
  double max_radians = Deg2rad(to_degrees);
  // Once we have the candidates, we now filter them down to ones that
  // actually live on the arc, rather than the entire circle.
  for (int i = 0; i < num_candidates; ++i) {
    double radians = UNSAFE_BUFFERS(candidates[i]);

    while (radians < min_radians)
      radians += 2.0 * M_PI;
    while (radians > max_radians)
      radians -= 2.0 * M_PI;
    if (radians < min_radians)
      continue;

    gfx::Transform rotation;
    rotation.RotateAbout(axis, Rad2deg(radians));
    box.ExpandTo(rotation.MapPoint(point));
  }
}

bool TransformOperations::BlendedBoundsForBox(const gfx::BoxF& box,
                                              const TransformOperations& from,
                                              const double& min_progress,
                                              const double& max_progress,
                                              gfx::BoxF* bounds) const {
  int from_size = from.Operations().size();
  int to_size = Operations().size();
  int size = std::max(from_size, to_size);

  *bounds = box;
  for (int i = size - 1; i >= 0; i--) {
    TransformOperation* from_operation =
        (i < from_size) ? from.Operations()[i] : nullptr;
    TransformOperation* to_operation =
        (i < to_size) ? Operations()[i] : nullptr;

    DCHECK(from_operation || to_operation);
    TransformOperation::OperationType interpolation_type =
        to_operation ? to_operation->GetType() : from_operation->GetType();
    if (from_operation && to_operation &&
        !from_operation->CanBlendWith(*to_operation)) {
      return false;
    }

    switch (interpolation_type) {
      case TransformOperation::kTranslate:
      case TransformOperation::kTranslateX:
      case TransformOperation::kTranslateY:
      case TransformOperation::kTranslateZ:
      case TransformOperation::kTranslate3D:
      case TransformOperation::kScale:
      case TransformOperation::kScaleX:
      case TransformOperation::kScaleY:
      case TransformOperation::kScaleZ:
      case TransformOperation::kScale3D:
      case TransformOperation::kSkew:
      case TransformOperation::kSkewX:
      case TransformOperation::kSkewY:
      case TransformOperation::kPerspective: {
        TransformOperation* from_transform = nullptr;
        TransformOperation* to_transform = nullptr;
        if (!to_operation) {
          from_transform =
              from_operation->Blend(to_operation, 1 - min_progress, false);
          to_transform =
              from_operation->Blend(to_operation, 1 - max_progress, false);
        } else {
          from_transform =
              to_operation->Blend(from_operation, min_progress, false);
          to_transform =
              to_operation->Blend(from_operation, max_progress, false);
        }
        if (!from_transform || !to_transform)
          continue;
        gfx::Transform from_matrix;
        gfx::Transform to_matrix;
        from_transform->Apply(from_matrix, gfx::SizeF());
        to_transform->Apply(to_matrix, gfx::SizeF());
        gfx::BoxF from_box = from_matrix.MapBox(*bounds);
        gfx::BoxF to_box = to_matrix.MapBox(*bounds);
        *bounds = from_box;
        bounds->ExpandTo(to_box);
        continue;
      }
      case TransformOperation::kRotate:
      case TransformOperation::kRotate3D:
      case TransformOperation::kRotateX:
      case TransformOperation::kRotateY:
      case TransformOperation::kRotateZ: {
        RotateTransformOperation* identity_rotation = nullptr;
        const RotateTransformOperation* from_rotation = nullptr;
        const RotateTransformOperation* to_rotation = nullptr;
        if (from_operation) {
          from_rotation =
              static_cast<const RotateTransformOperation*>(from_operation);
          if (from_rotation->Axis().IsZero())
            from_rotation = nullptr;
        }

        if (to_operation) {
          to_rotation =
              static_cast<const RotateTransformOperation*>(to_operation);
          if (to_rotation->Axis().IsZero())
            to_rotation = nullptr;
        }

        double from_angle;
        double to_angle;
        gfx::Vector3dF axis;
        if (!RotateTransformOperation::GetCommonAxis(
                from_rotation, to_rotation, axis, from_angle, to_angle)) {
          return false;
        }

        if (!from_rotation) {
          identity_rotation = MakeGarbageCollected<RotateTransformOperation>(
              axis.x(), axis.y(), axis.z(), 0,
              from_operation ? from_operation->GetType()
                             : to_operation->GetType());
          from_rotation = identity_rotation;
        }

        if (!to_rotation) {
          if (!identity_rotation)
            identity_rotation = MakeGarbageCollected<RotateTransformOperation>(
                axis.x(), axis.y(), axis.z(), 0,
                from_operation ? from_operation->GetType()
                               : to_operation->GetType());
          to_rotation = identity_rotation;
        }

        gfx::BoxF from_box = *bounds;
        bool first = true;
        for (size_t j = 0; j < 2; ++j) {
          for (size_t k = 0; k < 2; ++k) {
            for (size_t m = 0; m < 2; ++m) {
              gfx::BoxF bounds_for_arc;
              gfx::Point3F corner(from_box.x(), from_box.y(), from_box.z());
              corner +=
                  gfx::Vector3dF(j * from_box.width(), k * from_box.height(),
                                 m * from_box.depth());
              BoundingBoxForArc(corner, *from_rotation, *to_rotation,
                                min_progress, max_progress, bounds_for_arc);
              if (first) {
                *bounds = bounds_for_arc;
                first = false;
              } else {
                bounds->ExpandTo(bounds_for_arc);
              }
            }
          }
        }
      }
        continue;
      case TransformOperation::kMatrix:
      case TransformOperation::kMatrix3D:
      case TransformOperation::kInterpolated:
      case TransformOperation::kRotateAroundOrigin:
        return false;
    }
  }

  return true;
}

TransformOperations TransformOperations::Add(
    const TransformOperations& addend) const {
  TransformOperations result;
  result.operations_ = Operations();
  result.operations_.AppendVector(addend.Operations());
  return result;
}

TransformOperations TransformOperations::Zoom(double factor) const {
  TransformOperations result;
  for (auto& transform_operation : operations_)
    result.operations_.push_back(transform_operation->Zoom(factor));
  return result;
}

}  // namespace blink