File: hash_map.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (592 lines) | stat: -rw-r--r-- 21,139 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Library General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Library General Public License for more details.
 *
 * You should have received a copy of the GNU Library General Public License
 * along with this library; see the file COPYING.LIB.  If not, write to
 * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301, USA.
 *
 */

#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_

#include <initializer_list>
#include <iterator>

#include "base/compiler_specific.h"
#include "base/numerics/safe_conversions.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partition_allocator.h"
#include "third_party/blink/renderer/platform/wtf/atomic_operations.h"
#include "third_party/blink/renderer/platform/wtf/construct_traits.h"
#include "third_party/blink/renderer/platform/wtf/hash_table.h"
#include "third_party/blink/renderer/platform/wtf/key_value_pair.h"
#include "third_party/blink/renderer/platform/wtf/type_traits.h"
#include "third_party/blink/renderer/platform/wtf/wtf_size_t.h"

namespace WTF {

template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits;

template <typename Value, typename Traits, typename Allocator>
class HashCountedSet;

struct KeyValuePairExtractor {
  STATIC_ONLY(KeyValuePairExtractor);
  template <typename T>
  static const typename T::KeyType& ExtractKey(const T& p) {
    return p.key;
  }
  template <typename T>
  static typename T::KeyType& ExtractKey(T& p) {
    return p.key;
  }
  // Assumes out points to a buffer of size at least sizeof(T::KeyType).
  template <typename T>
  static void ExtractKeyToMemory(const T& p, void* out) {
    AtomicReadMemcpy<sizeof(typename T::KeyType), alignof(typename T::KeyType)>(
        out, &p.key);
  }
  template <typename T>
  static void ClearValue(T& p) {
    using ValueType = typename T::ValueType;
    if (IsTraceable<ValueType>::value) {
      AtomicMemzero<sizeof(ValueType), alignof(ValueType)>(&p.value);
    } else {
      UNSAFE_TODO(memset(static_cast<void*>(&p.value), 0, sizeof(p.value)));
    }
  }
};

// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed; for integer keys 0 or -1 can't be used as a key. You can change
// the restriction with a custom key hash traits. See hash_traits.h for how to
// define hash traits.
// Commonly used key types define their key hash traits separately from the
// class itself, so e.g if you want a `WTF::HashMap<WTF::String, ...>` you must
// include `string_hash.h`.
template <typename KeyArg,
          typename MappedArg,
          typename KeyTraitsArg = HashTraits<KeyArg>,
          typename MappedTraitsArg = HashTraits<MappedArg>,
          typename Allocator = PartitionAllocator>
class HashMap {
  USE_ALLOCATOR(HashMap, Allocator);
  template <typename T, typename U, typename V>
  friend class HashCountedSet;

 private:
  typedef KeyTraitsArg KeyTraits;
  typedef MappedTraitsArg MappedTraits;
  typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;

 public:
  typedef typename KeyTraits::TraitType KeyType;
  typedef const typename KeyTraits::PeekInType& KeyPeekInType;
  typedef typename MappedTraits::TraitType MappedType;
  typedef typename ValueTraits::TraitType ValueType;
  using value_type = ValueType;

 private:
  typedef typename MappedTraits::PeekOutType MappedPeekType;

  typedef HashTable<KeyType,
                    ValueType,
                    KeyValuePairExtractor,
                    ValueTraits,
                    KeyTraits,
                    Allocator>
      HashTableType;

  class HashMapKeysProxy;
  class HashMapValuesProxy;

 public:
  HashMap() = default;

#if DUMP_HASHTABLE_STATS_PER_TABLE
  void DumpStats() { impl_.DumpStats(); }
#endif
  HashMap(const HashMap&) = default;
  HashMap& operator=(const HashMap&) = default;
  HashMap(HashMap&&) = default;
  HashMap& operator=(HashMap&&) = default;

  // For example, HashMap<int, int>({{1, 11}, {2, 22}, {3, 33}}) will give you
  // a HashMap containing a mapping {1 -> 11, 2 -> 22, 3 -> 33}.
  HashMap(std::initializer_list<ValueType> elements);
  HashMap& operator=(std::initializer_list<ValueType> elements);

  // Useful for constructing from, for example, STL and base maps.
  template <typename It>
    requires(std::forward_iterator<It>)
  HashMap(It begin, It end);

  typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
  typedef HashTableConstIteratorAdapter<HashTableType, ValueType>
      const_iterator;
  typedef typename HashTableType::AddResult AddResult;

  void swap(HashMap& ref) { impl_.swap(ref.impl_); }

  wtf_size_t size() const;
  wtf_size_t Capacity() const;
  void ReserveCapacityForSize(unsigned size) {
    impl_.ReserveCapacityForSize(size);
  }

  bool empty() const;

  // iterators iterate over pairs of keys and values
  iterator begin();
  iterator end();
  const_iterator begin() const;
  const_iterator end() const;

  HashMapKeysProxy& Keys() { return static_cast<HashMapKeysProxy&>(*this); }
  const HashMapKeysProxy& Keys() const {
    return static_cast<const HashMapKeysProxy&>(*this);
  }

  HashMapValuesProxy& Values() {
    return static_cast<HashMapValuesProxy&>(*this);
  }
  const HashMapValuesProxy& Values() const {
    return static_cast<const HashMapValuesProxy&>(*this);
  }

  iterator find(KeyPeekInType);
  const_iterator find(KeyPeekInType) const;
  bool Contains(KeyPeekInType) const;
  // Returns a reference to the mapped value. Crashes if no mapped value exists.
  MappedPeekType at(KeyPeekInType) const;

  // Replaces value but not key if key is already present. Return value is a
  // pair of the iterator to the key location, and a boolean that's true if a
  // new value was actually added.
  template <typename IncomingKeyType, typename IncomingMappedType>
  AddResult Set(IncomingKeyType&&, IncomingMappedType&&);

  // Does nothing if key is already present. Return value is a pair of the
  // iterator to the key location, and a boolean that's true if a new value
  // was actually added.
  template <typename IncomingKeyType, typename IncomingMappedType>
  AddResult insert(IncomingKeyType&&, IncomingMappedType&&);

  // NOTE: You cannot continue using an iterator after erase()
  // (no modifications are allowed during iteration). Consider erase_if()
  // or RemoveAll().
  void erase(KeyPeekInType);
  void erase(iterator);

  // Erases all elements for which pred(element) returns true.
  //
  // The predicate should have a signature compatible with:
  //   bool pred(const WTF::KeyValuePair<KeyType, MappedType>&);
  template <typename Pred>
  void erase_if(Pred pred);

  void clear();
  template <typename Collection>
  void RemoveAll(const Collection& to_be_removed) {
    WTF::RemoveAll(*this, to_be_removed);
  }

  MappedType Take(KeyPeekInType);  // efficient combination of get with remove

  // An alternate version of find() that finds the object by hashing and
  // comparing with some other type, to avoid the cost of type conversion.
  // HashTranslator must have the following function members:
  //   static unsigned GetHash(const T&);
  //   static bool Equal(const ValueType&, const T&);
  template <typename HashTranslator, typename T>
  iterator Find(const T&);
  template <typename HashTranslator, typename T>
  const_iterator Find(const T&) const;
  template <typename HashTranslator, typename T>
  bool Contains(const T&) const;

  template <typename IncomingKeyType>
  static bool IsValidKey(const IncomingKeyType&);

  void Trace(auto visitor) const
    requires Allocator::kIsGarbageCollected
  {
    impl_.Trace(visitor);
  }

 protected:
  ValueType** GetBufferSlot() { return impl_.GetBufferSlot(); }

 private:
  template <typename IncomingKeyType, typename IncomingMappedType>
  AddResult InlineAdd(IncomingKeyType&&, IncomingMappedType&&);

  HashTableType impl_;

  struct TypeConstraints {
    constexpr TypeConstraints() {
      static_assert(!IsStackAllocatedTypeV<KeyArg>);
      static_assert(!IsStackAllocatedTypeV<MappedArg>);
      static_assert(Allocator::kIsGarbageCollected ||
                        !IsPointerToGarbageCollectedType<KeyArg>,
                    "Cannot put raw pointers to garbage-collected classes into "
                    "an off-heap HashMap.  Use HeapHashMap<> instead.");
      static_assert(Allocator::kIsGarbageCollected ||
                        !IsPointerToGarbageCollectedType<MappedArg>,
                    "Cannot put raw pointers to garbage-collected classes into "
                    "an off-heap HashMap.  Use HeapHashMap<> instead.");
    }
  };
  NO_UNIQUE_ADDRESS TypeConstraints type_constraints_;
};

template <typename KeyArg,
          typename MappedArg,
          typename KeyTraitsArg,
          typename MappedTraitsArg,
          typename Allocator>
class HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::
    HashMapKeysProxy : private HashMap<KeyArg,
                                       MappedArg,
                                       KeyTraitsArg,
                                       MappedTraitsArg,
                                       Allocator> {
  DISALLOW_NEW();

 public:
  using HashMapType =
      HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>;
  using iterator = HashMapType::iterator::KeysIterator;
  using const_iterator = HashMapType::const_iterator::KeysIterator;
  using value_type = HashMapType::KeyType;

  iterator begin() { return HashMapType::begin().Keys(); }
  iterator end() { return HashMapType::end().Keys(); }

  const_iterator begin() const { return HashMapType::begin().Keys(); }
  const_iterator end() const { return HashMapType::end().Keys(); }

  wtf_size_t size() const { return HashMapType::size(); }

 private:
  friend class HashMap;

  HashMapKeysProxy() = delete;
  HashMapKeysProxy(const HashMapKeysProxy&) = delete;
  HashMapKeysProxy& operator=(const HashMapKeysProxy&) = delete;
  ~HashMapKeysProxy() = delete;
};

template <typename KeyArg,
          typename MappedArg,
          typename KeyTraitsArg,
          typename MappedTraitsArg,
          typename Allocator>
class HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::
    HashMapValuesProxy : private HashMap<KeyArg,
                                         MappedArg,
                                         KeyTraitsArg,
                                         MappedTraitsArg,
                                         Allocator> {
  DISALLOW_NEW();

 public:
  using HashMapType =
      HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>;
  using iterator = HashMapType::iterator::ValuesIterator;
  using const_iterator = HashMapType::const_iterator::ValuesIterator;
  using value_type = HashMapType::MappedType;

  iterator begin() { return HashMapType::begin().Values(); }
  iterator end() { return HashMapType::end().Values(); }

  const_iterator begin() const { return HashMapType::begin().Values(); }
  const_iterator end() const { return HashMapType::end().Values(); }

  wtf_size_t size() const { return HashMapType::size(); }

 private:
  friend class HashMap;

  HashMapValuesProxy() = delete;
  HashMapValuesProxy(const HashMapValuesProxy&) = delete;
  HashMapValuesProxy& operator=(const HashMapValuesProxy&) = delete;
  ~HashMapValuesProxy() = delete;
};

template <typename KeyTraits, typename ValueTraits>
struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, ValueTraits> {
  using P = typename KeyValuePairHashTraits<KeyTraits, ValueTraits>::TraitType;
  static bool IsEmptyValue(const P& value) {
    return IsHashTraitsEmptyValue<KeyTraits>(value.key);
  }
  // HashTable should never use the following functions/flags of this traits
  // type. They make sense in the KeyTraits only.
  static bool Equal(const P&, const P&) = delete;
  static void ConstructDeletedValue(P&) = delete;
  static bool IsDeletedValue(const P&) = delete;

 private:
  static const bool kSafeToCompareToEmptyOrDeleted;
};

template <typename KeyTraits, typename ValueTraits>
struct HashMapTranslator {
  STATIC_ONLY(HashMapTranslator);
  template <typename T>
  static unsigned GetHash(const T& key) {
    return KeyTraits::GetHash(key);
  }
  template <typename T, typename U>
  static bool Equal(const T& a, const U& b) {
    return KeyTraits::Equal(a, b);
  }
  template <typename T, typename U, typename V>
  static void Store(T& location, U&& key, V&& mapped) {
    location.key = std::forward<U>(key);
    location.value = std::forward<V>(mapped);
  }
};

template <typename KeyArg,
          typename MappedArg,
          typename KeyTraitsArg,
          typename MappedTraitsArg,
          typename Allocator>
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMap(
    std::initializer_list<ValueType> elements) {
  if (elements.size()) {
    impl_.ReserveCapacityForSize(
        base::checked_cast<wtf_size_t>(elements.size()));
  }
  for (const ValueType& element : elements)
    insert(element.key, element.value);
}

template <typename T, typename U, typename V, typename W, typename X>
auto HashMap<T, U, V, W, X>::operator=(
    std::initializer_list<ValueType> elements) -> HashMap& {
  *this = HashMap(std::move(elements));
  return *this;
}

template <typename KeyArg,
          typename MappedArg,
          typename KeyTraitsArg,
          typename MappedTraitsArg,
          typename Allocator>
template <typename It>
  requires(std::forward_iterator<It>)
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMap(
    It begin,
    It end) {
  if constexpr (std::random_access_iterator<It>) {
    ReserveCapacityForSize(base::checked_cast<wtf_size_t>(end - begin));
  }
  for (; begin != end; ++begin) {
    insert(begin->first, begin->second);
  }
}

template <typename T, typename U, typename V, typename W, typename X>
inline wtf_size_t HashMap<T, U, V, W, X>::size() const {
  return impl_.size();
}

template <typename T, typename U, typename V, typename W, typename X>
inline wtf_size_t HashMap<T, U, V, W, X>::Capacity() const {
  return impl_.Capacity();
}

template <typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::empty() const {
  return impl_.empty();
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator
HashMap<T, U, V, W, X>::begin() {
  return impl_.begin();
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::end() {
  return impl_.end();
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::begin() const {
  return impl_.begin();
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::end() const {
  return impl_.end();
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(
    KeyPeekInType key) {
  return impl_.find(key);
}

template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::find(KeyPeekInType key) const {
  return impl_.find(key);
}

template <typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::Contains(KeyPeekInType key) const {
  return impl_.Contains(key);
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::Find(
    const TYPE& value) {
  return impl_.template Find<HashTranslator>(value);
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::Find(const TYPE& value) const {
  return impl_.template Find<HashTranslator>(value);
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline bool HashMap<T, U, V, W, X>::Contains(const TYPE& value) const {
  return impl_.template Contains<HashTranslator>(value);
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::InlineAdd(
    IncomingKeyType&& key,
    IncomingMappedType&& mapped) {
  return impl_.template insert<HashMapTranslator<KeyTraits, ValueTraits>>(
      std::forward<IncomingKeyType>(key),
      std::forward<IncomingMappedType>(mapped));
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::Set(
    IncomingKeyType&& key,
    IncomingMappedType&& mapped) {
  AddResult result = InlineAdd(std::forward<IncomingKeyType>(key),
                               std::forward<IncomingMappedType>(mapped));
  if (!result.is_new_entry) {
    // The InlineAdd call above found an existing hash table entry; we need
    // to set the mapped value.
    //
    // It's safe to call std::forward again, because |mapped| isn't moved if
    // there's an existing entry.
    result.stored_value->value = std::forward<IncomingMappedType>(mapped);
  }
  return result;
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::insert(
    IncomingKeyType&& key,
    IncomingMappedType&& mapped) {
  return InlineAdd(std::forward<IncomingKeyType>(key),
                   std::forward<IncomingMappedType>(mapped));
}

template <typename T, typename U, typename V, typename W, typename X>
typename HashMap<T, U, V, W, X>::MappedPeekType HashMap<T, U, V, W, X>::at(
    KeyPeekInType key) const {
  const ValueType* entry = impl_.Lookup(key);
  CHECK(entry) << "HashMap::at found no value for the given key. See "
                  "https://crbug.com/1058527.";
  return MappedTraits::Peek(entry->value);
}

template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::erase(iterator it) {
  impl_.erase(it.impl_);
}

template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::erase(KeyPeekInType key) {
  erase(find(key));
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename Pred>
inline void HashMap<T, U, V, W, X>::erase_if(Pred pred) {
  impl_.erase_if(std::forward<Pred>(pred));
}

template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::clear() {
  impl_.clear();
}

template <typename T, typename U, typename V, typename W, typename X>
auto HashMap<T, U, V, W, X>::Take(KeyPeekInType key) -> MappedType {
  iterator it = find(key);
  if (it == end())
    return MappedTraits::EmptyValue();
  MappedType result = std::move(it->value);
  erase(it);
  return result;
}

template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType>
inline bool HashMap<T, U, V, W, X>::IsValidKey(const IncomingKeyType& key) {
  return !IsHashTraitsEmptyOrDeletedValue<KeyTraits>(key);
}

template <typename T, typename U, typename V, typename W, typename X>
bool operator==(const HashMap<T, U, V, W, X>& a,
                const HashMap<T, U, V, W, X>& b) {
  if (a.size() != b.size())
    return false;

  typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator;

  const_iterator a_end = a.end();
  const_iterator b_end = b.end();
  for (const_iterator it = a.begin(); it != a_end; ++it) {
    const_iterator b_pos = b.find(it->key);
    if (b_pos == b_end || it->value != b_pos->value)
      return false;
  }

  return true;
}

template <typename T, typename U, typename V, typename W, typename X>
inline bool operator!=(const HashMap<T, U, V, W, X>& a,
                       const HashMap<T, U, V, W, X>& b) {
  return !(a == b);
}

}  // namespace WTF

using WTF::HashMap;

#endif  // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_