1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
#include <initializer_list>
#include <iterator>
#include "base/compiler_specific.h"
#include "base/numerics/safe_conversions.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/allocator/partition_allocator.h"
#include "third_party/blink/renderer/platform/wtf/atomic_operations.h"
#include "third_party/blink/renderer/platform/wtf/construct_traits.h"
#include "third_party/blink/renderer/platform/wtf/hash_table.h"
#include "third_party/blink/renderer/platform/wtf/key_value_pair.h"
#include "third_party/blink/renderer/platform/wtf/type_traits.h"
#include "third_party/blink/renderer/platform/wtf/wtf_size_t.h"
namespace WTF {
template <typename KeyTraits, typename MappedTraits>
struct HashMapValueTraits;
template <typename Value, typename Traits, typename Allocator>
class HashCountedSet;
struct KeyValuePairExtractor {
STATIC_ONLY(KeyValuePairExtractor);
template <typename T>
static const typename T::KeyType& ExtractKey(const T& p) {
return p.key;
}
template <typename T>
static typename T::KeyType& ExtractKey(T& p) {
return p.key;
}
// Assumes out points to a buffer of size at least sizeof(T::KeyType).
template <typename T>
static void ExtractKeyToMemory(const T& p, void* out) {
AtomicReadMemcpy<sizeof(typename T::KeyType), alignof(typename T::KeyType)>(
out, &p.key);
}
template <typename T>
static void ClearValue(T& p) {
using ValueType = typename T::ValueType;
if (IsTraceable<ValueType>::value) {
AtomicMemzero<sizeof(ValueType), alignof(ValueType)>(&p.value);
} else {
UNSAFE_TODO(memset(static_cast<void*>(&p.value), 0, sizeof(p.value)));
}
}
};
// Note: empty or deleted key values are not allowed, using them may lead to
// undefined behavior. For pointer keys this means that null pointers are not
// allowed; for integer keys 0 or -1 can't be used as a key. You can change
// the restriction with a custom key hash traits. See hash_traits.h for how to
// define hash traits.
// Commonly used key types define their key hash traits separately from the
// class itself, so e.g if you want a `WTF::HashMap<WTF::String, ...>` you must
// include `string_hash.h`.
template <typename KeyArg,
typename MappedArg,
typename KeyTraitsArg = HashTraits<KeyArg>,
typename MappedTraitsArg = HashTraits<MappedArg>,
typename Allocator = PartitionAllocator>
class HashMap {
USE_ALLOCATOR(HashMap, Allocator);
template <typename T, typename U, typename V>
friend class HashCountedSet;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef const typename KeyTraits::PeekInType& KeyPeekInType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
using value_type = ValueType;
private:
typedef typename MappedTraits::PeekOutType MappedPeekType;
typedef HashTable<KeyType,
ValueType,
KeyValuePairExtractor,
ValueTraits,
KeyTraits,
Allocator>
HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
HashMap() = default;
#if DUMP_HASHTABLE_STATS_PER_TABLE
void DumpStats() { impl_.DumpStats(); }
#endif
HashMap(const HashMap&) = default;
HashMap& operator=(const HashMap&) = default;
HashMap(HashMap&&) = default;
HashMap& operator=(HashMap&&) = default;
// For example, HashMap<int, int>({{1, 11}, {2, 22}, {3, 33}}) will give you
// a HashMap containing a mapping {1 -> 11, 2 -> 22, 3 -> 33}.
HashMap(std::initializer_list<ValueType> elements);
HashMap& operator=(std::initializer_list<ValueType> elements);
// Useful for constructing from, for example, STL and base maps.
template <typename It>
requires(std::forward_iterator<It>)
HashMap(It begin, It end);
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType>
const_iterator;
typedef typename HashTableType::AddResult AddResult;
void swap(HashMap& ref) { impl_.swap(ref.impl_); }
wtf_size_t size() const;
wtf_size_t Capacity() const;
void ReserveCapacityForSize(unsigned size) {
impl_.ReserveCapacityForSize(size);
}
bool empty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
HashMapKeysProxy& Keys() { return static_cast<HashMapKeysProxy&>(*this); }
const HashMapKeysProxy& Keys() const {
return static_cast<const HashMapKeysProxy&>(*this);
}
HashMapValuesProxy& Values() {
return static_cast<HashMapValuesProxy&>(*this);
}
const HashMapValuesProxy& Values() const {
return static_cast<const HashMapValuesProxy&>(*this);
}
iterator find(KeyPeekInType);
const_iterator find(KeyPeekInType) const;
bool Contains(KeyPeekInType) const;
// Returns a reference to the mapped value. Crashes if no mapped value exists.
MappedPeekType at(KeyPeekInType) const;
// Replaces value but not key if key is already present. Return value is a
// pair of the iterator to the key location, and a boolean that's true if a
// new value was actually added.
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult Set(IncomingKeyType&&, IncomingMappedType&&);
// Does nothing if key is already present. Return value is a pair of the
// iterator to the key location, and a boolean that's true if a new value
// was actually added.
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult insert(IncomingKeyType&&, IncomingMappedType&&);
// NOTE: You cannot continue using an iterator after erase()
// (no modifications are allowed during iteration). Consider erase_if()
// or RemoveAll().
void erase(KeyPeekInType);
void erase(iterator);
// Erases all elements for which pred(element) returns true.
//
// The predicate should have a signature compatible with:
// bool pred(const WTF::KeyValuePair<KeyType, MappedType>&);
template <typename Pred>
void erase_if(Pred pred);
void clear();
template <typename Collection>
void RemoveAll(const Collection& to_be_removed) {
WTF::RemoveAll(*this, to_be_removed);
}
MappedType Take(KeyPeekInType); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type conversion.
// HashTranslator must have the following function members:
// static unsigned GetHash(const T&);
// static bool Equal(const ValueType&, const T&);
template <typename HashTranslator, typename T>
iterator Find(const T&);
template <typename HashTranslator, typename T>
const_iterator Find(const T&) const;
template <typename HashTranslator, typename T>
bool Contains(const T&) const;
template <typename IncomingKeyType>
static bool IsValidKey(const IncomingKeyType&);
void Trace(auto visitor) const
requires Allocator::kIsGarbageCollected
{
impl_.Trace(visitor);
}
protected:
ValueType** GetBufferSlot() { return impl_.GetBufferSlot(); }
private:
template <typename IncomingKeyType, typename IncomingMappedType>
AddResult InlineAdd(IncomingKeyType&&, IncomingMappedType&&);
HashTableType impl_;
struct TypeConstraints {
constexpr TypeConstraints() {
static_assert(!IsStackAllocatedTypeV<KeyArg>);
static_assert(!IsStackAllocatedTypeV<MappedArg>);
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<KeyArg>,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<MappedArg>,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap HashMap. Use HeapHashMap<> instead.");
}
};
NO_UNIQUE_ADDRESS TypeConstraints type_constraints_;
};
template <typename KeyArg,
typename MappedArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::
HashMapKeysProxy : private HashMap<KeyArg,
MappedArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
using HashMapType =
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>;
using iterator = HashMapType::iterator::KeysIterator;
using const_iterator = HashMapType::const_iterator::KeysIterator;
using value_type = HashMapType::KeyType;
iterator begin() { return HashMapType::begin().Keys(); }
iterator end() { return HashMapType::end().Keys(); }
const_iterator begin() const { return HashMapType::begin().Keys(); }
const_iterator end() const { return HashMapType::end().Keys(); }
wtf_size_t size() const { return HashMapType::size(); }
private:
friend class HashMap;
HashMapKeysProxy() = delete;
HashMapKeysProxy(const HashMapKeysProxy&) = delete;
HashMapKeysProxy& operator=(const HashMapKeysProxy&) = delete;
~HashMapKeysProxy() = delete;
};
template <typename KeyArg,
typename MappedArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
class HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::
HashMapValuesProxy : private HashMap<KeyArg,
MappedArg,
KeyTraitsArg,
MappedTraitsArg,
Allocator> {
DISALLOW_NEW();
public:
using HashMapType =
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>;
using iterator = HashMapType::iterator::ValuesIterator;
using const_iterator = HashMapType::const_iterator::ValuesIterator;
using value_type = HashMapType::MappedType;
iterator begin() { return HashMapType::begin().Values(); }
iterator end() { return HashMapType::end().Values(); }
const_iterator begin() const { return HashMapType::begin().Values(); }
const_iterator end() const { return HashMapType::end().Values(); }
wtf_size_t size() const { return HashMapType::size(); }
private:
friend class HashMap;
HashMapValuesProxy() = delete;
HashMapValuesProxy(const HashMapValuesProxy&) = delete;
HashMapValuesProxy& operator=(const HashMapValuesProxy&) = delete;
~HashMapValuesProxy() = delete;
};
template <typename KeyTraits, typename ValueTraits>
struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, ValueTraits> {
using P = typename KeyValuePairHashTraits<KeyTraits, ValueTraits>::TraitType;
static bool IsEmptyValue(const P& value) {
return IsHashTraitsEmptyValue<KeyTraits>(value.key);
}
// HashTable should never use the following functions/flags of this traits
// type. They make sense in the KeyTraits only.
static bool Equal(const P&, const P&) = delete;
static void ConstructDeletedValue(P&) = delete;
static bool IsDeletedValue(const P&) = delete;
private:
static const bool kSafeToCompareToEmptyOrDeleted;
};
template <typename KeyTraits, typename ValueTraits>
struct HashMapTranslator {
STATIC_ONLY(HashMapTranslator);
template <typename T>
static unsigned GetHash(const T& key) {
return KeyTraits::GetHash(key);
}
template <typename T, typename U>
static bool Equal(const T& a, const U& b) {
return KeyTraits::Equal(a, b);
}
template <typename T, typename U, typename V>
static void Store(T& location, U&& key, V&& mapped) {
location.key = std::forward<U>(key);
location.value = std::forward<V>(mapped);
}
};
template <typename KeyArg,
typename MappedArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMap(
std::initializer_list<ValueType> elements) {
if (elements.size()) {
impl_.ReserveCapacityForSize(
base::checked_cast<wtf_size_t>(elements.size()));
}
for (const ValueType& element : elements)
insert(element.key, element.value);
}
template <typename T, typename U, typename V, typename W, typename X>
auto HashMap<T, U, V, W, X>::operator=(
std::initializer_list<ValueType> elements) -> HashMap& {
*this = HashMap(std::move(elements));
return *this;
}
template <typename KeyArg,
typename MappedArg,
typename KeyTraitsArg,
typename MappedTraitsArg,
typename Allocator>
template <typename It>
requires(std::forward_iterator<It>)
HashMap<KeyArg, MappedArg, KeyTraitsArg, MappedTraitsArg, Allocator>::HashMap(
It begin,
It end) {
if constexpr (std::random_access_iterator<It>) {
ReserveCapacityForSize(base::checked_cast<wtf_size_t>(end - begin));
}
for (; begin != end; ++begin) {
insert(begin->first, begin->second);
}
}
template <typename T, typename U, typename V, typename W, typename X>
inline wtf_size_t HashMap<T, U, V, W, X>::size() const {
return impl_.size();
}
template <typename T, typename U, typename V, typename W, typename X>
inline wtf_size_t HashMap<T, U, V, W, X>::Capacity() const {
return impl_.Capacity();
}
template <typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::empty() const {
return impl_.empty();
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator
HashMap<T, U, V, W, X>::begin() {
return impl_.begin();
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::end() {
return impl_.end();
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::begin() const {
return impl_.begin();
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::end() const {
return impl_.end();
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(
KeyPeekInType key) {
return impl_.find(key);
}
template <typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::find(KeyPeekInType key) const {
return impl_.find(key);
}
template <typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::Contains(KeyPeekInType key) const {
return impl_.Contains(key);
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::Find(
const TYPE& value) {
return impl_.template Find<HashTranslator>(value);
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::Find(const TYPE& value) const {
return impl_.template Find<HashTranslator>(value);
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename HashTranslator, typename TYPE>
inline bool HashMap<T, U, V, W, X>::Contains(const TYPE& value) const {
return impl_.template Contains<HashTranslator>(value);
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::InlineAdd(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return impl_.template insert<HashMapTranslator<KeyTraits, ValueTraits>>(
std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::Set(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
AddResult result = InlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
if (!result.is_new_entry) {
// The InlineAdd call above found an existing hash table entry; we need
// to set the mapped value.
//
// It's safe to call std::forward again, because |mapped| isn't moved if
// there's an existing entry.
result.stored_value->value = std::forward<IncomingMappedType>(mapped);
}
return result;
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType, typename IncomingMappedType>
typename HashMap<T, U, V, W, X>::AddResult HashMap<T, U, V, W, X>::insert(
IncomingKeyType&& key,
IncomingMappedType&& mapped) {
return InlineAdd(std::forward<IncomingKeyType>(key),
std::forward<IncomingMappedType>(mapped));
}
template <typename T, typename U, typename V, typename W, typename X>
typename HashMap<T, U, V, W, X>::MappedPeekType HashMap<T, U, V, W, X>::at(
KeyPeekInType key) const {
const ValueType* entry = impl_.Lookup(key);
CHECK(entry) << "HashMap::at found no value for the given key. See "
"https://crbug.com/1058527.";
return MappedTraits::Peek(entry->value);
}
template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::erase(iterator it) {
impl_.erase(it.impl_);
}
template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::erase(KeyPeekInType key) {
erase(find(key));
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename Pred>
inline void HashMap<T, U, V, W, X>::erase_if(Pred pred) {
impl_.erase_if(std::forward<Pred>(pred));
}
template <typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::clear() {
impl_.clear();
}
template <typename T, typename U, typename V, typename W, typename X>
auto HashMap<T, U, V, W, X>::Take(KeyPeekInType key) -> MappedType {
iterator it = find(key);
if (it == end())
return MappedTraits::EmptyValue();
MappedType result = std::move(it->value);
erase(it);
return result;
}
template <typename T, typename U, typename V, typename W, typename X>
template <typename IncomingKeyType>
inline bool HashMap<T, U, V, W, X>::IsValidKey(const IncomingKeyType& key) {
return !IsHashTraitsEmptyOrDeletedValue<KeyTraits>(key);
}
template <typename T, typename U, typename V, typename W, typename X>
bool operator==(const HashMap<T, U, V, W, X>& a,
const HashMap<T, U, V, W, X>& b) {
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator;
const_iterator a_end = a.end();
const_iterator b_end = b.end();
for (const_iterator it = a.begin(); it != a_end; ++it) {
const_iterator b_pos = b.find(it->key);
if (b_pos == b_end || it->value != b_pos->value)
return false;
}
return true;
}
template <typename T, typename U, typename V, typename W, typename X>
inline bool operator!=(const HashMap<T, U, V, W, X>& a,
const HashMap<T, U, V, W, X>& b) {
return !(a == b);
}
} // namespace WTF
using WTF::HashMap;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_MAP_H_
|