1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights
* reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_TRAITS_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_TRAITS_H_
#include <string.h>
#include <concepts>
#include <limits>
#include <memory>
#include <type_traits>
#include <utility>
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/hash_functions.h"
#include "third_party/blink/renderer/platform/wtf/hash_table_deleted_value_type.h"
#include "third_party/blink/renderer/platform/wtf/std_lib_extras.h"
#include "third_party/blink/renderer/platform/wtf/type_traits.h"
namespace WTF {
// A hash traits type is required for a type when the type is used as the key
// or value of a HashTable-based classes. See documentation in
// GenericHashTraitsBase for the HashTraits API.
//
// A hash traits type can be defined as
// - a specialization of the HashTraits template, which will be automatically
// used, or
// - a standalone hash traits type, which should be passed as the *Traits
// template parameters of HashTable-based classes.
// The former is preferred if the hash traits defines the default hash behavior
// of the type. The latter is suitable when a type has multiple hash behaviors,
// e.g. CaseFoldingHashTraits defines an alternative hash behavior of strings.
//
// This file contains definitions of hash traits for integral types,
// floating-point types, enums, raw and smart pointers, std::pair, etc.
// These types can be used as hash key or value directly.
//
// This file also contains hash traits types that can be used as the base class
// of hash traits of other types.
//
// A simple hash traits type for a key type can be like:
// template <>
// HashTraits<KeyType> : GenericHashTraits<KeyType> {
// static unsigned GetHash(const KeyType& key) { ...; }
// static KeyType EmptyValue() { ...; }
// static KeyType DeletedValue() { ...; }
// };
//
// A hash traits type for a value type can be even simpler. See documentation
// in GenericHashTraitsBase for which functions/flags are for key types only
// (i.e. not needed for a value type).
//
template <typename T>
struct HashTraits;
class String;
namespace internal {
template <typename T>
struct GenericHashTraitsBase {
STATIC_ONLY(GenericHashTraitsBase);
using TraitType = T;
// Type for functions that do not take ownership, such as contains.
// If overridden, the type must be assignable to T.
using PeekInType = const T&;
// Types for iterators.
using IteratorGetType = T*;
using IteratorConstGetType = const T*;
using IteratorReferenceType = T&;
using IteratorConstReferenceType = const T&;
// Type for return value of functions that do not transfer ownership, such
// as get.
using PeekOutType = T;
static const T& Peek(const T& value) { return value; }
// Computes the hash code.
// This is for key types only.
static unsigned GetHash(const T&) = delete;
// Whether two values are equal. By default, operator== is used.
// This is for key types only.
static bool Equal(const T& a, const T& b) { return a == b; }
// When this is true, the hash table can optimize lookup operations by
// skipping checks for empty or deleted values. It can be true only if
// Equal(a, b) can reliably return false where
// IsHashTraitsEmptyValue(a) != IsHashTraitsEmptyValue(b) or
// IsHashTraitsDeletedValue(a) != IsHashTraitsDeletedValue(b).
// If this is false, the hash table will never call Equal(a, b) where a or b
// is an empty or a deleted value. When T is a pointer type, Equal(a, b) can
// dereference a and b safely without checking if a or b is nullptr or an
// invalid pointer that represents the deleted value.
// This is for key types only.
static constexpr bool kSafeToCompareToEmptyOrDeleted = true;
// Defines the empty value which is used to fill unused slots in the hash
// table. This function is preferred to IsEmptyValue() when the empty value
// can be represented with a value that can be safely and cheaply
// compared/assigned to another value. By default, the default constructor
// is used.
static T EmptyValue() { return T(); }
// Checks if a given value is an empty value. If this is defined, the hash
// table will call this function (through IsHashTraitsEmptyValue()) to check
// if a slot is empty. Otherwise `v == EmptyValue()` will be used.
static void IsEmptyValue(const T& v) = delete;
// When this is true, the hash table can optimize allocation of empty hash
// slots with zeroed memory without calling EmptyValue().
// This flag can be set to true if any of the following conditions is true:
// 1. EmptyValue() is defined and all bytes of the return value are zero.
// 2. IsEmptyValue() is defined and it returns true for a value containing all
// zero bytes.
// Otherwise this flag must be set to false.
static constexpr bool kEmptyValueIsZero = false;
// Defines the deleted value which is used to fill the slot for a hash entry
// when the entry is deleted from the hash table. A hash traits type must
// define either this function or both IsDeletedValue() and
// ConstructDeletedValue(). This function is preferred to IsDeletedValue()
// and ConstructDeletedValue() when the deleted value can be represented with
// a value that can be safely and cheaply compared/assigned to another value.
// This is for key types only.
// NOTE: The destructor of the returned value *may not* be called, so the
// value should not own any dynamically allocated resources.
static T DeletedValue() = delete;
// Checks if a given value is a deleted value. If this is defined, the hash
// table will call this function (through IsHashTraitsDeletedValue()) to check
// if a slot is deleted. Otherwise `v == DeletedValue()` will be used.
// This is for key types only.
static bool IsDeletedValue(const T& v) = delete;
// Constructs a deleted value in-place in the given memory space.
// When this is called, T's destructor on the slot has been called, so this
// function should not call destructor again (e.g. by assigning a value
// to `slot`), unless T is trivially destructible.
// This must be defined if IsDeletedValue() is defined, and will be called
// through ConstructHashTraitsDeletedValue(). Otherwise
// `slot = DeletedValue()` will be used.
// This is for key types only.
// NOTE: The destructor of the constructed value *will not* be called, so the
// value should not own any dynamically allocated resources.
static void ConstructDeletedValue(T& slot) = delete;
// The starting table size. Can be overridden when we know beforehand that a
// hash table will have at least N entries.
#if defined(MEMORY_TOOL_REPLACES_ALLOCATOR)
// The allocation pool for nodes is one big chunk that ASAN has no insight
// into, so it can cloak errors. Make it as small as possible to force nodes
// to be allocated individually where ASAN can see them.
static constexpr unsigned kMinimumTableSize = 1;
#else
static constexpr unsigned kMinimumTableSize = 8;
#endif
// The NeedsToForbidGCOnMove flag is used to make the hash table move
// operations safe when GC is enabled: if a move constructor invokes
// an allocation triggering the GC then it should be invoked within GC
// forbidden scope.
template <typename U = void>
struct NeedsToForbidGCOnMove {
// TODO(yutak): Consider using of std:::is_trivially_move_constructible
// when it is accessible.
static constexpr bool value =
!std::is_trivial_v<T> || !std::is_standard_layout_v<T>;
};
// The kCanTraceConcurrently value is used by Oilpan concurrent marking. Only
// type for which HashTraits<T>::kCanTraceConcurrently is true can be traced
// on a concurrent thread.
static constexpr bool kCanTraceConcurrently = false;
// Used by Oilpan compaction. Only types that return true here will be
// compacted.
static constexpr bool kSupportsCompaction = false;
};
template <typename T, auto empty_value, auto deleted_value>
struct IntOrEnumHashTraits : internal::GenericHashTraitsBase<T> {
static_assert(std::is_integral_v<T> || std::is_enum_v<T>);
static unsigned GetHash(T key) { return WTF::HashInt(key); }
static constexpr bool kEmptyValueIsZero =
static_cast<int64_t>(empty_value) == 0;
static constexpr T EmptyValue() { return static_cast<T>(empty_value); }
static constexpr T DeletedValue() { return static_cast<T>(deleted_value); }
static constexpr bool kSupportsCompaction = true;
};
} // namespace internal
// Default integer traits disallow both 0 and -1 as keys (max value instead of
// -1 for unsigned).
template <typename T, T empty_value = 0, T deleted_value = static_cast<T>(-1)>
struct IntHashTraits
: internal::IntOrEnumHashTraits<T, empty_value, deleted_value> {
static_assert(std::is_integral_v<T>);
};
// Default traits for an enum type. 0 is very popular, and -1 is also popular.
// So we use -128 and -127.
template <typename T>
struct EnumHashTraits : internal::IntOrEnumHashTraits<T, -128, -127> {
static_assert(std::is_enum_v<T>);
};
template <typename T>
struct GenericHashTraits : internal::GenericHashTraitsBase<T> {
static_assert(!std::is_integral_v<T>);
static_assert(!std::is_enum_v<T>);
static_assert(!std::is_floating_point_v<T>);
};
template <typename T>
requires std::integral<T>
struct GenericHashTraits<T> : IntHashTraits<T> {};
template <typename T>
requires std::is_enum_v<T>
struct GenericHashTraits<T> : EnumHashTraits<T> {};
template <typename T>
requires std::floating_point<T>
struct GenericHashTraits<T> : internal::GenericHashTraitsBase<T> {
static unsigned GetHash(T key) { return HashFloat(key); }
static bool Equal(T a, T b) { return FloatEqualForHash(a, b); }
static constexpr T EmptyValue() { return std::numeric_limits<T>::infinity(); }
static constexpr T DeletedValue() {
return -std::numeric_limits<T>::infinity();
}
static constexpr bool kSupportsCompaction = true;
};
// Default integral traits disallow both 0 and max as keys -- use these traits
// to allow zero and disallow max - 1.
template <typename T>
struct IntWithZeroKeyHashTraits
: IntHashTraits<T,
std::numeric_limits<T>::max(),
std::numeric_limits<T>::max() - 1> {};
// This hash traits can be used in cases where the key is already a good hash.
struct AlreadyHashedTraits : GenericHashTraits<unsigned> {
static unsigned GetHash(unsigned key) { return key; }
};
struct AlreadyHashedWithZeroKeyTraits : IntWithZeroKeyHashTraits<unsigned> {
static unsigned GetHash(unsigned key) { return key; }
};
template <typename P>
struct GenericHashTraits<P*> : internal::GenericHashTraitsBase<P*> {
static unsigned GetHash(P* key) { return HashPointer(key); }
static constexpr bool kEmptyValueIsZero = true;
static constexpr P* DeletedValue() { return reinterpret_cast<P*>(-1); }
};
template <typename P>
struct GenericHashTraits<scoped_refptr<P>>
: internal::GenericHashTraitsBase<scoped_refptr<P>> {
static_assert(sizeof(void*) == sizeof(scoped_refptr<P>),
"Unexpected RefPtr size."
" RefPtr needs to be single pointer to support deleted value.");
static unsigned GetHash(P* key) { return HashPointer(key); }
static unsigned GetHash(const scoped_refptr<P>& key) {
return GetHash(key.get());
}
static bool Equal(const scoped_refptr<P>& a, const scoped_refptr<P>& b) {
return a == b;
}
static bool Equal(P* a, const scoped_refptr<P>& b) { return a == b; }
static bool Equal(const scoped_refptr<P>& a, P* b) { return a == b; }
class RefPtrValuePeeker {
DISALLOW_NEW();
public:
ALWAYS_INLINE RefPtrValuePeeker(P* p) : ptr_(p) {}
template <typename U>
RefPtrValuePeeker(const scoped_refptr<U>& p) : ptr_(p.get()) {}
ALWAYS_INLINE operator P*() const { return ptr_; }
private:
P* ptr_;
};
static constexpr bool kEmptyValueIsZero = true;
static bool IsEmptyValue(const scoped_refptr<P>& value) { return !value; }
static bool IsDeletedValue(const scoped_refptr<P>& value) {
return *reinterpret_cast<void* const*>(&value) ==
reinterpret_cast<const void*>(-1);
}
static void ConstructDeletedValue(scoped_refptr<P>& slot) {
*reinterpret_cast<void**>(&slot) = reinterpret_cast<void*>(-1);
}
typedef RefPtrValuePeeker PeekInType;
typedef scoped_refptr<P>* IteratorGetType;
typedef const scoped_refptr<P>* IteratorConstGetType;
typedef scoped_refptr<P>& IteratorReferenceType;
typedef const scoped_refptr<P>& IteratorConstReferenceType;
typedef P* PeekOutType;
static PeekOutType Peek(const scoped_refptr<P>& value) { return value.get(); }
template <typename = void>
struct NeedsToForbidGCOnMove {
static constexpr bool value = false;
};
};
template <typename T>
struct GenericHashTraits<std::unique_ptr<T>>
: internal::GenericHashTraitsBase<std::unique_ptr<T>> {
static unsigned GetHash(T* key) { return HashPointer(key); }
static unsigned GetHash(const std::unique_ptr<T>& key) {
return GetHash(key.get());
}
static bool Equal(const std::unique_ptr<T>& a, const std::unique_ptr<T>& b) {
return a == b;
}
static bool Equal(const std::unique_ptr<T>& a, const T* b) {
return a.get() == b;
}
static bool Equal(const T* a, const std::unique_ptr<T>& b) {
return a == b.get();
}
static constexpr bool kEmptyValueIsZero = true;
static bool IsEmptyValue(const std::unique_ptr<T>& value) { return !value; }
using PeekInType = T*;
using PeekOutType = T*;
static PeekOutType Peek(const std::unique_ptr<T>& value) {
return value.get();
}
static void ConstructDeletedValue(std::unique_ptr<T>& slot) {
// Dirty trick: implant an invalid pointer to unique_ptr. Destructor isn't
// called for deleted buckets, so this is okay.
new (NotNullTag::kNotNull, &slot)
std::unique_ptr<T>(reinterpret_cast<T*>(1u));
}
static bool IsDeletedValue(const std::unique_ptr<T>& value) {
return value.get() == reinterpret_cast<T*>(1u);
}
template <typename = void>
struct NeedsToForbidGCOnMove {
static constexpr bool value = false;
};
};
// HashTraits<T> is defined as GenericHashTraits<T> by default.
// The separation of HashTraits<T> and GenericHashTraits<T> is to allow
// a specialized HashTraits<T> to inherit GenericHashTraits<T>.
template <typename T>
struct HashTraits : GenericHashTraits<T> {};
// This hash traits type requires the following methods in class T, unless
// the corresponding hash traits method is overridden:
// // Computes the hash code, for GetHash().
// unsigned GetHash() const;
// // Creates the deleted value, for ConstructDeletedValue().
// T(HashTableDeletedValueType);
// // Checks if `this` is a deleted value, for IsDeletedValue().
// bool IsHashTableDeletedValue() const;
// Also requires T() and operator== if EmptyValue() and Equal() are not
// overridden, respectively, which is the same as GenericHashTraits<T>.
template <typename T>
struct SimpleClassHashTraits : GenericHashTraits<T> {
static_assert(std::is_class_v<T>);
static unsigned GetHash(const T& key) { return key.GetHash(); }
static constexpr bool kEmptyValueIsZero = true;
template <typename U = void>
struct NeedsToForbidGCOnMove {
static constexpr bool value = false;
};
static void ConstructDeletedValue(T& slot) {
new (NotNullTag::kNotNull, &slot) T(kHashTableDeletedValue);
}
static bool IsDeletedValue(const T& value) {
return value.IsHashTableDeletedValue();
}
};
// Defined in string_hash.h.
template <>
struct HashTraits<String>;
namespace internal {
template <typename Traits>
struct HashTraitsEmptyValueChecker {
static bool IsEmptyValue(const typename Traits::TraitType& value) {
return value == Traits::EmptyValue();
}
};
template <typename Traits>
requires requires(const typename Traits::TraitType& t) {
{ Traits::IsEmptyValue(t) } -> std::same_as<bool>;
}
struct HashTraitsEmptyValueChecker<Traits> {
static bool IsEmptyValue(const typename Traits::TraitType& value) {
return Traits::IsEmptyValue(value);
}
};
template <typename Traits>
struct HashTraitsDeletedValueHelper {
static bool IsDeletedValue(const typename Traits::TraitType& value) {
return value == Traits::DeletedValue();
}
static void ConstructDeletedValue(typename Traits::TraitType& slot) {
new (NotNullTag::kNotNull, &slot)
typename Traits::TraitType(Traits::DeletedValue());
}
};
template <typename Traits>
requires requires(const typename Traits::TraitType& t) {
{ Traits::IsDeletedValue(t) } -> std::same_as<bool>;
}
struct HashTraitsDeletedValueHelper<Traits> {
static bool IsDeletedValue(const typename Traits::TraitType& value) {
return Traits::IsDeletedValue(value);
}
// Traits must also define ConstructDeletedValue() if it defines
// IsDeletedValue().
static void ConstructDeletedValue(typename Traits::TraitType& slot) {
Traits::ConstructDeletedValue(slot);
}
};
} // namespace internal
// This function selects either the EmptyValue() function or the IsEmptyValue()
// function to check for empty values.
template <typename Traits, typename T>
inline bool IsHashTraitsEmptyValue(const T& value) {
return internal::HashTraitsEmptyValueChecker<Traits>::IsEmptyValue(value);
}
// This function selects either the DeletedValue() function or the
// IsDeletedValue() function to check for deleted values.
template <typename Traits, typename T>
inline bool IsHashTraitsDeletedValue(const T& value) {
return internal::HashTraitsDeletedValueHelper<Traits>::IsDeletedValue(value);
}
// This function selects either the DeletedValue() function or the
// ConstructDeletedValue() function to construct a deleted value.
template <typename Traits, typename T>
inline void ConstructHashTraitsDeletedValue(T& slot) {
internal::HashTraitsDeletedValueHelper<Traits>::ConstructDeletedValue(slot);
}
template <typename Traits, typename T>
inline bool IsHashTraitsEmptyOrDeletedValue(const T& value) {
return IsHashTraitsEmptyValue<Traits, T>(value) ||
IsHashTraitsDeletedValue<Traits, T>(value);
}
// A HashTraits type for T to delegate all HashTraits API to a field.
template <typename T,
auto field,
typename FieldTraits = HashTraits<
std::remove_reference_t<decltype(std::declval<T>().*field)>>>
struct OneFieldHashTraits : GenericHashTraits<T> {
using TraitType = T;
static unsigned GetHash(const T& p) { return FieldTraits::GetHash(p.*field); }
static bool Equal(const T& a, const T& b) {
return FieldTraits::Equal(a.*field, b.*field);
}
static constexpr bool kSafeToCompareToEmptyOrDeleted =
FieldTraits::kSafeToCompareToEmptyOrDeleted;
static constexpr bool kEmptyValueIsZero = FieldTraits::kEmptyValueIsZero;
static T EmptyValue() { return T(FieldTraits::EmptyValue()); }
static bool IsEmptyValue(const T& value) {
return IsHashTraitsEmptyValue<FieldTraits>(value.*field);
}
static void ConstructDeletedValue(T& slot) {
ConstructHashTraitsDeletedValue<FieldTraits>(slot.*field);
}
static bool IsDeletedValue(const T& value) {
return IsHashTraitsDeletedValue<FieldTraits>(value.*field);
}
static constexpr unsigned kMinimumTableSize = FieldTraits::kMinimumTableSize;
template <typename U = void>
struct NeedsToForbidGCOnMove {
static const bool value =
FieldTraits::template NeedsToForbidGCOnMove<>::value;
};
};
// A HashTraits type for T to delegate all HashTraits API to two fields.
template <
typename T,
auto first_field,
auto second_field,
typename FirstTraits = HashTraits<
std::remove_reference_t<decltype(std::declval<T>().*first_field)>>,
typename SecondTraits = HashTraits<
std::remove_reference_t<decltype(std::declval<T>().*second_field)>>>
struct TwoFieldsHashTraits : OneFieldHashTraits<T, first_field, FirstTraits> {
using TraitType = T;
static unsigned GetHash(const T& p) {
return HashInts(FirstTraits::GetHash(p.*first_field),
SecondTraits::GetHash(p.*second_field));
}
static bool Equal(const T& a, const T& b) {
return FirstTraits::Equal(a.*first_field, b.*first_field) &&
SecondTraits::Equal(a.*second_field, b.*second_field);
}
static constexpr bool kSafeToCompareToEmptyOrDeleted =
FirstTraits::kSafeToCompareToEmptyOrDeleted &&
SecondTraits::kSafeToCompareToEmptyOrDeleted;
static constexpr bool kEmptyValueIsZero =
FirstTraits::kEmptyValueIsZero && SecondTraits::kEmptyValueIsZero;
static T EmptyValue() {
return T(FirstTraits::EmptyValue(), SecondTraits::EmptyValue());
}
static bool IsEmptyValue(const T& value) {
return IsHashTraitsEmptyValue<FirstTraits>(value.*first_field) &&
IsHashTraitsEmptyValue<SecondTraits>(value.*second_field);
}
// ConstructDeletedValue(), IsDeletedValue(), kMinimumTableSize delegate to
// the first field, inherited from OneFieldHashTraits.
template <typename U = void>
struct NeedsToForbidGCOnMove {
static const bool value =
FirstTraits::template NeedsToForbidGCOnMove<>::value ||
SecondTraits::template NeedsToForbidGCOnMove<>::value;
};
};
template <typename FirstTraitsArg,
typename SecondTraitsArg,
typename P = std::pair<typename FirstTraitsArg::TraitType,
typename SecondTraitsArg::TraitType>>
struct PairHashTraits : TwoFieldsHashTraits<P,
&P::first,
&P::second,
FirstTraitsArg,
SecondTraitsArg> {
using TraitType = P;
using FirstTraits = FirstTraitsArg;
using SecondTraits = SecondTraitsArg;
};
template <typename First, typename Second>
struct HashTraits<std::pair<First, Second>>
: public PairHashTraits<HashTraits<First>, HashTraits<Second>> {};
// Shortcut of HashTraits<T>::GetHash(), which can deduct T automatically.
template <typename T>
unsigned GetHash(const T& key) {
return HashTraits<T>::GetHash(key);
}
} // namespace WTF
using WTF::AlreadyHashedTraits;
using WTF::AlreadyHashedWithZeroKeyTraits;
using WTF::EnumHashTraits;
using WTF::GenericHashTraits;
using WTF::HashTraits;
using WTF::IntHashTraits;
using WTF::IntWithZeroKeyHashTraits;
using WTF::OneFieldHashTraits;
using WTF::PairHashTraits;
using WTF::SimpleClassHashTraits;
using WTF::TwoFieldsHashTraits;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_HASH_TRAITS_H_
|