1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2012 Apple Inc. All rights
* reserved.
* Copyright (C) 2011, Benjamin Poulain <ikipou@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_LINKED_HASH_SET_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_LINKED_HASH_SET_H_
#include "third_party/blink/renderer/platform/wtf/allocator/partition_allocator.h"
#include "third_party/blink/renderer/platform/wtf/hash_map.h"
#include "third_party/blink/renderer/platform/wtf/hash_set.h"
#include "third_party/blink/renderer/platform/wtf/sanitizers.h"
#include "third_party/blink/renderer/platform/wtf/type_traits.h"
#include "third_party/blink/renderer/platform/wtf/vector_backed_linked_list.h"
namespace WTF {
// LinkedHashSet provides a Set interface like HashSet, but also has a
// predictable iteration order. It has O(1) insertion, removal, and test for
// containership. It maintains a linked list through its contents such that
// iterating it yields values in the order in which they were inserted.
// The linked list is implementing in a vector (with links being indexes instead
// of pointers), to simplify the move of backing during GC compaction.
//
// This container supports WeakMember<T>.
//
// LinkedHashSet iterators are not invalidated by mutation of the
// collection, unless they point to removed items. This means, for example, that
// you can safely modify the container while iterating over it generally, as
// long as you don't remove the current item. Moving items does not invalidate
// iterator, so that it may cause unexpected behavior (i.e. loop unexpectedly
// ends when moving the current item to last).
//
// Note: empty/deleted values as defined in HashTraits are not allowed.
template <typename ValueArg,
typename TraitsArg = HashTraits<ValueArg>,
typename Allocator = PartitionAllocator>
class LinkedHashSet {
USE_ALLOCATOR(LinkedHashSet, Allocator);
private:
using Value = ValueArg;
using Map =
HashMap<Value, wtf_size_t, TraitsArg, HashTraits<wtf_size_t>, Allocator>;
using ListType = VectorBackedLinkedList<Value, Allocator>;
using BackingIterator = typename ListType::const_iterator;
using BackingReverseIterator = typename ListType::const_reverse_iterator;
using BackingConstIterator = typename ListType::const_iterator;
public:
using value_type = ValueArg;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
// TODO(keinakashima): add security check
struct AddResult final {
STACK_ALLOCATED();
public:
AddResult(const Value* stored_value, bool is_new_entry)
: stored_value(stored_value), is_new_entry(is_new_entry) {}
const Value* stored_value;
bool is_new_entry;
};
template <typename T>
class IteratorWrapper {
public:
using value_type = typename T::value_type;
using size_type = typename T::size_type;
using difference_type = typename T::difference_type;
using pointer = typename T::pointer;
using reference = typename T::reference;
constexpr IteratorWrapper() = default;
IteratorWrapper(const IteratorWrapper&) = default;
IteratorWrapper& operator=(const IteratorWrapper&) = default;
const Value& operator*() const { return *iterator_; }
const Value* operator->() const { return &*iterator_; }
IteratorWrapper& operator++() {
++iterator_;
return *this;
}
IteratorWrapper& operator--() {
--iterator_;
return *this;
}
IteratorWrapper operator++(int) {
auto copy = *this;
operator++();
return copy;
}
IteratorWrapper operator--(int) {
auto copy = *this;
operator--();
return copy;
}
bool operator==(const IteratorWrapper& other) const {
// No need to compare map_iterator_ here because it is not related to
// iterator_'s value but only for strongifying WeakMembers for the
// lifetime of this IteratorWrapper.
return iterator_ == other.iterator_;
}
bool operator!=(const IteratorWrapper& other) const {
return !(*this == other);
}
protected:
IteratorWrapper(const T& it, const Map& map)
: iterator_(it), map_iterator_(map.begin()) {}
// LinkedHashSet::list_ iterator.
T iterator_;
// This is needed for WeakMember support in LinkedHashSet. Holding
// value_to_index_'s iterator to map, for the lifetime of this iterator,
// will strongify WeakMembers in both value_to_index_ as well as their
// copies inside list_. This is necessary to prevent list_'s weak callback
// to remove dead weak entries while an active iterator exists.
typename Map::const_iterator map_iterator_;
friend class LinkedHashSet<ValueArg, TraitsArg, Allocator>;
};
using iterator = IteratorWrapper<BackingIterator>;
using const_iterator = IteratorWrapper<BackingIterator>;
using reverse_iterator = IteratorWrapper<BackingReverseIterator>;
using const_reverse_iterator = IteratorWrapper<BackingReverseIterator>;
typedef typename TraitsArg::PeekInType ValuePeekInType;
LinkedHashSet() = default;
LinkedHashSet(const LinkedHashSet&) = default;
LinkedHashSet(LinkedHashSet&&) = default;
LinkedHashSet& operator=(const LinkedHashSet&) = default;
LinkedHashSet& operator=(LinkedHashSet&&) = default;
~LinkedHashSet() = default;
void Swap(LinkedHashSet&);
wtf_size_t size() const {
DCHECK(value_to_index_.size() == list_.size());
return list_.size();
}
bool empty() const { return list_.empty(); }
iterator begin() { return MakeIterator(list_.begin()); }
const_iterator begin() const { return MakeIterator(list_.cbegin()); }
const_iterator cbegin() const { return MakeIterator(list_.cbegin()); }
iterator end() { return MakeIterator(list_.end()); }
const_iterator end() const { return MakeIterator(list_.cend()); }
const_iterator cend() const { return MakeIterator(list_.cend()); }
reverse_iterator rbegin() { return MakeReverseIterator(list_.rbegin()); }
const_reverse_iterator rbegin() const {
return MakeReverseIterator(list_.crbegin());
}
const_reverse_iterator crbegin() const {
return MakeReverseIterator(list_.crbegin());
}
reverse_iterator rend() { return MakeReverseIterator(list_.rend()); }
const_reverse_iterator rend() const {
return MakeReverseIterator(list_.crend());
}
const_reverse_iterator crend() const {
return MakeReverseIterator(list_.crend());
}
const Value& front() const { return list_.front(); }
const Value& back() const { return list_.back(); }
iterator find(ValuePeekInType);
const_iterator find(ValuePeekInType) const;
bool Contains(ValuePeekInType) const;
// An alternate version of find() that finds the object by hashing and
// comparing with some other type, to avoid the cost of type conversion.
// The HashTranslator interface is defined in HashSet.
template <typename HashTranslator, typename T>
iterator Find(const T&);
template <typename HashTranslator, typename T>
const_iterator Find(const T&) const;
template <typename HashTranslator, typename T>
bool Contains(const T&) const;
template <typename IncomingValueType>
AddResult insert(IncomingValueType&&);
// If |value| already exists in the set, nothing happens.
// If |before_value| doesn't exist in the set, appends |value|.
template <typename IncomingValueType>
AddResult InsertBefore(ValuePeekInType before_value,
IncomingValueType&& value);
template <typename IncomingValueType>
AddResult InsertBefore(const_iterator it, IncomingValueType&& value);
template <typename IncomingValueType>
AddResult AppendOrMoveToLast(IncomingValueType&&);
template <typename IncomingValueType>
AddResult PrependOrMoveToFirst(IncomingValueType&&);
// Moves |target| right before |new_position| in a linked list. This operation
// is executed by just updating indices of related nodes.
void MoveTo(const_iterator target, const_iterator new_position);
void erase(ValuePeekInType);
void erase(const_iterator);
void RemoveFirst();
void pop_back();
void clear();
void Trace(auto visitor) const
requires Allocator::kIsGarbageCollected
{
value_to_index_.Trace(visitor);
list_.Trace(visitor);
}
private:
enum class MoveType {
kMoveIfValueExists,
kDontMove,
};
class GCForbiddenScope {
STACK_ALLOCATED();
public:
GCForbiddenScope() { Allocator::EnterGCForbiddenScope(); }
~GCForbiddenScope() { Allocator::LeaveGCForbiddenScope(); }
};
template <typename IncomingValueType>
AddResult InsertOrMoveBefore(const_iterator, IncomingValueType&&, MoveType);
iterator MakeIterator(const BackingIterator& it) const {
return iterator(it, value_to_index_);
}
reverse_iterator MakeReverseIterator(const BackingReverseIterator& it) const {
return reverse_iterator(it, value_to_index_);
}
Map value_to_index_;
ListType list_;
struct TypeConstraints {
constexpr TypeConstraints() {
static_assert(!IsStackAllocatedTypeV<Value>);
static_assert(Allocator::kIsGarbageCollected ||
!IsPointerToGarbageCollectedType<Value>,
"Cannot put raw pointers to garbage-collected classes into "
"an off-heap LinkedHashSet. Use "
"HeapLinkedHashSet<Member<T>> instead.");
}
};
NO_UNIQUE_ADDRESS TypeConstraints type_constraints_;
};
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::Swap(LinkedHashSet& other) {
value_to_index_.swap(other.value_to_index_);
list_.swap(other.list_);
}
template <typename T, typename TraitsArg, typename Allocator>
typename LinkedHashSet<T, TraitsArg, Allocator>::iterator
LinkedHashSet<T, TraitsArg, Allocator>::find(ValuePeekInType value) {
typename Map::const_iterator it = value_to_index_.find(value);
if (it == value_to_index_.end())
return end();
return MakeIterator(list_.MakeIterator(it->value));
}
template <typename T, typename TraitsArg, typename Allocator>
typename LinkedHashSet<T, TraitsArg, Allocator>::const_iterator
LinkedHashSet<T, TraitsArg, Allocator>::find(ValuePeekInType value) const {
typename Map::const_iterator it = value_to_index_.find(value);
if (it == value_to_index_.end())
return end();
return MakeIterator(list_.MakeConstIterator(it->value));
}
template <typename T, typename TraitsArg, typename Allocator>
bool LinkedHashSet<T, TraitsArg, Allocator>::Contains(
ValuePeekInType value) const {
return value_to_index_.Contains(value);
}
template <typename ValueType, typename TraitsArg, typename Allocator>
template <typename HashTranslator, typename T>
inline typename LinkedHashSet<ValueType, TraitsArg, Allocator>::iterator
LinkedHashSet<ValueType, TraitsArg, Allocator>::Find(const T& value) {
typename Map::const_iterator it =
value_to_index_.template Find<HashTranslator>(value);
if (it == value_to_index_.end())
return end();
return MakeIterator(list_.MakeIterator(it->value));
}
template <typename ValueType, typename TraitsArg, typename Allocator>
template <typename HashTranslator, typename T>
inline typename LinkedHashSet<ValueType, TraitsArg, Allocator>::const_iterator
LinkedHashSet<ValueType, TraitsArg, Allocator>::Find(const T& value) const {
typename Map::const_iterator it =
value_to_index_.template Find<HashTranslator>(value);
if (it == value_to_index_.end())
return end();
return MakeIterator(list_.MakeConstIterator(it->value));
}
template <typename ValueType, typename TraitsArg, typename Allocator>
template <typename HashTranslator, typename T>
bool LinkedHashSet<ValueType, TraitsArg, Allocator>::Contains(
const T& value) const {
return value_to_index_.template Contains<HashTranslator>(value);
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::insert(IncomingValueType&& value) {
return InsertOrMoveBefore(end(), std::forward<IncomingValueType>(value),
MoveType::kDontMove);
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::InsertBefore(
ValuePeekInType before_value,
IncomingValueType&& value) {
return InsertOrMoveBefore(find(before_value),
std::forward<IncomingValueType>(value),
MoveType::kDontMove);
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::InsertBefore(
const_iterator it,
IncomingValueType&& value) {
return InsertOrMoveBefore(it, std::forward<IncomingValueType>(value),
MoveType::kDontMove);
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::AppendOrMoveToLast(
IncomingValueType&& value) {
return InsertOrMoveBefore(end(), std::forward<IncomingValueType>(value),
MoveType::kMoveIfValueExists);
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::PrependOrMoveToFirst(
IncomingValueType&& value) {
return InsertOrMoveBefore(begin(), std::forward<IncomingValueType>(value),
MoveType::kMoveIfValueExists);
}
template <typename T, typename TraitsArg, typename Allocator>
void LinkedHashSet<T, TraitsArg, Allocator>::MoveTo(
const_iterator target,
const_iterator new_position) {
list_.MoveTo(target.iterator_, new_position.iterator_);
}
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::erase(
ValuePeekInType value) {
erase(find(value));
}
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::erase(const_iterator it) {
if (it == end())
return;
// Forbid GC while modifying LinkedHashSet to avoid conflict between
// |value_to_index_| and |list_|.
auto scope = GCForbiddenScope();
value_to_index_.erase(*it);
list_.erase(it.iterator_);
}
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::RemoveFirst() {
DCHECK(!empty());
erase(begin());
}
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::pop_back() {
DCHECK(!empty());
erase(--end());
}
template <typename T, typename TraitsArg, typename Allocator>
inline void LinkedHashSet<T, TraitsArg, Allocator>::clear() {
// Forbid GC while modifying LinkedHashSet to avoid conflict between
// |value_to_index_| and |list_|.
auto scope = GCForbiddenScope();
value_to_index_.clear();
list_.clear();
}
template <typename T, typename TraitsArg, typename Allocator>
template <typename IncomingValueType>
typename LinkedHashSet<T, TraitsArg, Allocator>::AddResult
LinkedHashSet<T, TraitsArg, Allocator>::InsertOrMoveBefore(
const_iterator position,
IncomingValueType&& value,
MoveType type) {
// Forbid GC while modifying LinkedHashSet to avoid conflict between
// |value_to_index_| and |list_|.
auto scope = GCForbiddenScope();
typename Map::AddResult result = value_to_index_.insert(value, kNotFound);
if (result.is_new_entry) {
BackingConstIterator stored_position_iterator = list_.insert(
position.iterator_, std::forward<IncomingValueType>(value));
result.stored_value->value = stored_position_iterator.GetIndex();
return AddResult(&*stored_position_iterator, true);
}
BackingConstIterator stored_position_iterator =
list_.MakeConstIterator(result.stored_value->value);
if (type == MoveType::kDontMove)
return AddResult(&*stored_position_iterator, false);
BackingConstIterator moved_position_iterator =
list_.MoveTo(stored_position_iterator, position.iterator_);
return AddResult(&*moved_position_iterator, false);
}
} // namespace WTF
using WTF::LinkedHashSet;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_LINKED_HASH_SET_H_
|