1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_
#include <cmath>
#include <cstddef>
#include <limits>
#include "base/check_op.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#if defined(COMPILER_MSVC)
// Make math.h behave like other platforms.
#define _USE_MATH_DEFINES
// Even if math.h was already included, including math.h again with
// _USE_MATH_DEFINES adds the extra defines.
#include <math.h>
#include <stdint.h>
#endif
#if BUILDFLAG(IS_OPENBSD)
#include <machine/ieee.h>
#include <sys/types.h>
#endif
constexpr double kPiDouble = M_PI;
constexpr float kPiFloat = static_cast<float>(M_PI);
constexpr double kPiOverTwoDouble = M_PI_2;
constexpr float kPiOverTwoFloat = static_cast<float>(M_PI_2);
constexpr double kPiOverFourDouble = M_PI_4;
constexpr float kPiOverFourFloat = static_cast<float>(M_PI_4);
constexpr double kTwoPiDouble = kPiDouble * 2.0;
constexpr float kTwoPiFloat = kPiFloat * 2.0f;
constexpr double Deg2rad(double d) {
return d * (kPiDouble / 180.0);
}
constexpr double Rad2deg(double r) {
return r * (180.0 / kPiDouble);
}
constexpr double Deg2grad(double d) {
return d * (400.0 / 360.0);
}
constexpr double Grad2deg(double g) {
return g * (360.0 / 400.0);
}
constexpr double Turn2deg(double t) {
return t * 360.0;
}
constexpr double Deg2turn(double d) {
return d * (1.0 / 360.0);
}
constexpr double Rad2grad(double r) {
return r * (200.0 / kPiDouble);
}
constexpr double Grad2rad(double g) {
return g * (kPiDouble / 200.0);
}
constexpr double Turn2grad(double t) {
return t * 400;
}
constexpr double Grad2turn(double g) {
return g * (1.0 / 400.0);
}
constexpr double Rad2turn(double r) {
return r * (1.0 / kTwoPiDouble);
}
constexpr double Turn2rad(double t) {
return t * kTwoPiDouble;
}
constexpr float Deg2rad(float d) {
return d * (kPiFloat / 180.0f);
}
constexpr float Rad2deg(float r) {
return r * (180.0f / kPiFloat);
}
constexpr float Deg2grad(float d) {
return d * (400.0f / 360.0f);
}
constexpr float Grad2deg(float g) {
return g * (360.0f / 400.0f);
}
constexpr float Turn2deg(float t) {
return t * 360.0f;
}
constexpr float Deg2turn(float d) {
return d * (1.0f / 360.0f);
}
constexpr float Rad2grad(float r) {
return r * (200.0f / kPiFloat);
}
constexpr float Grad2rad(float g) {
return g * (kPiFloat / 200.0f);
}
constexpr float Turn2grad(float t) {
return t * 400;
}
constexpr float Grad2turn(float g) {
return g * (1.0f / 400.0f);
}
constexpr double RoundHalfTowardsPositiveInfinity(double value) {
return std::floor(value + 0.5);
}
constexpr float RoundHalfTowardsPositiveInfinity(float value) {
return std::floor(value + 0.5f);
}
// ClampTo() is implemented by templated helper classes (to allow for partial
// template specialization) as well as several helper functions.
// This helper function can be called when we know that:
// (1) The type signednesses match so the compiler will not produce signed vs.
// unsigned warnings
// (2) The default type promotions/conversions are sufficient to handle things
// correctly
template <typename LimitType, typename ValueType>
inline constexpr LimitType ClampToDirectComparison(ValueType value,
LimitType min,
LimitType max) {
if (value >= max)
return max;
return (value <= min) ? min : static_cast<LimitType>(value);
}
// For any floating-point limits, or integral limits smaller than int64_t, we
// can cast the limits to double without losing precision; then the only cases
// where |value| can't be represented accurately as a double are the ones where
// it's outside the limit range anyway. So doing all comparisons as doubles
// will give correct results.
//
// In some cases, we can get better performance by using
// ClampToDirectComparison(). We use a templated class to switch between these
// two cases (instead of simply using a conditional within one function) in
// order to only compile the ClampToDirectComparison() code for cases where it
// will actually be used; this prevents the compiler from emitting warnings
// about unsafe code (even though we wouldn't actually be executing that code).
template <bool can_use_direct_comparison,
typename LimitType,
typename ValueType>
class ClampToNonLongLongHelper;
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<true, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
return ClampToDirectComparison(value, min, max);
}
};
template <typename LimitType, typename ValueType>
class ClampToNonLongLongHelper<false, LimitType, ValueType> {
STATIC_ONLY(ClampToNonLongLongHelper);
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
const double double_value = static_cast<double>(value);
if (double_value >= static_cast<double>(max))
return max;
if (double_value <= static_cast<double>(min))
return min;
// If the limit type is integer, we might get better performance by
// casting |value| (as opposed to |double_value|) to the limit type.
return std::numeric_limits<LimitType>::is_integer
? static_cast<LimitType>(value)
: static_cast<LimitType>(double_value);
}
};
// The unspecialized version of this templated class handles clamping to
// anything other than [u]int64_t limits. It simply uses the class above
// to toggle between the "fast" and "safe" clamp implementations.
template <typename LimitType, typename ValueType>
class ClampToHelper {
public:
static inline constexpr LimitType ClampTo(ValueType value,
LimitType min,
LimitType max) {
// We only use ClampToDirectComparison() when the integerness and
// signedness of the two types matches.
//
// If the integerness of the types doesn't match, then at best
// ClampToDirectComparison() won't be much more efficient than the
// cast-everything-to-double method, since we'll need to convert to
// floating point anyway; at worst, we risk incorrect results when
// clamping a float to a 32-bit integral type due to potential precision
// loss.
//
// If the signedness doesn't match, ClampToDirectComparison() will
// produce warnings about comparing signed vs. unsigned, which are apt
// since negative signed values will be converted to large unsigned ones
// and we'll get incorrect results.
return ClampToNonLongLongHelper <
std::numeric_limits<LimitType>::is_integer ==
std::numeric_limits<ValueType>::is_integer &&
std::numeric_limits<LimitType>::is_signed ==
std::numeric_limits<ValueType>::is_signed,
LimitType, ValueType > ::ClampTo(value, min, max);
}
};
// Clamping to [u]int64_t limits requires more care. These may not be
// accurately representable as doubles, so instead we cast |value| to the
// limit type. But that cast is undefined if |value| is floating point and
// outside the representable range of the limit type, so we also have to check
// for that case explicitly.
template <typename ValueType>
class ClampToHelper<int64_t, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline int64_t ClampTo(ValueType value, int64_t min, int64_t max) {
if (!std::numeric_limits<ValueType>::is_integer) {
if (value > 0) {
if (static_cast<double>(value) >=
static_cast<double>(std::numeric_limits<int64_t>::max()))
return max;
} else if (static_cast<double>(value) <=
static_cast<double>(std::numeric_limits<int64_t>::min())) {
return min;
}
}
// Note: If |value| were uint64_t it could be larger than the largest
// int64_t, and this code would be wrong; we handle this case with
// a separate full specialization below.
return ClampToDirectComparison(static_cast<int64_t>(value), min, max);
}
};
// This specialization handles the case where the above partial specialization
// would be potentially incorrect.
template <>
class ClampToHelper<int64_t, uint64_t> {
STATIC_ONLY(ClampToHelper);
public:
static inline int64_t ClampTo(uint64_t value, int64_t min, int64_t max) {
if (max <= 0 || value >= static_cast<uint64_t>(max))
return max;
const int64_t long_long_value = static_cast<int64_t>(value);
return (long_long_value <= min) ? min : long_long_value;
}
};
// This is similar to the partial specialization that clamps to int64_t, but
// because the lower-bound check is done for integer value types as well, we
// don't need a <uint64_t, int64_t> full specialization.
template <typename ValueType>
class ClampToHelper<uint64_t, ValueType> {
STATIC_ONLY(ClampToHelper);
public:
static inline uint64_t ClampTo(ValueType value, uint64_t min, uint64_t max) {
if (value <= 0)
return min;
if (!std::numeric_limits<ValueType>::is_integer) {
if (static_cast<double>(value) >=
static_cast<double>(std::numeric_limits<uint64_t>::max()))
return max;
}
return ClampToDirectComparison(static_cast<uint64_t>(value), min, max);
}
};
template <typename T>
constexpr T DefaultMaximumForClamp() {
return std::numeric_limits<T>::max();
}
template <typename T>
constexpr T DefaultMinimumForClamp() {
return std::numeric_limits<T>::lowest();
}
// And, finally, the actual function for people to call.
template <typename LimitType, typename ValueType>
constexpr LimitType ClampTo(
ValueType value,
LimitType min = DefaultMinimumForClamp<LimitType>(),
LimitType max = DefaultMaximumForClamp<LimitType>()) {
// We use __builtin_isnan instead of std::isnan here because std::isnan
// is not constexpr prior to C++23.
DCHECK(!__builtin_isnan(static_cast<double>(value)));
DCHECK_LE(min, max); // This also ensures |min| and |max| aren't NaN.
return ClampToHelper<LimitType, ValueType>::ClampTo(value, min, max);
}
template <typename LimitType, typename ValueType>
constexpr LimitType ClampToWithNaNTo0(
ValueType value,
LimitType min = DefaultMinimumForClamp<LimitType>(),
LimitType max = DefaultMaximumForClamp<LimitType>()) {
static_assert(std::numeric_limits<ValueType>::has_quiet_NaN);
if (std::isnan(value)) [[unlikely]] {
return 0;
}
return ClampTo<LimitType, ValueType>(value);
}
constexpr bool IsWithinIntRange(float x) {
return x > static_cast<float>(std::numeric_limits<int>::min()) &&
x < static_cast<float>(std::numeric_limits<int>::max());
}
static constexpr size_t GreatestCommonDivisor(size_t a, size_t b) {
return b ? GreatestCommonDivisor(b, a % b) : a;
}
constexpr size_t LowestCommonMultiple(size_t a, size_t b) {
return a && b ? a / GreatestCommonDivisor(a, b) * b : 0;
}
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_MATH_EXTRAS_H_
|