File: atomic_string_table.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (508 lines) | stat: -rw-r--r-- 17,789 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "third_party/blink/renderer/platform/wtf/text/atomic_string_table.h"

#include "base/containers/heap_array.h"
#include "base/notreached.h"
#include "third_party/blink/renderer/platform/wtf/text/character_visitor.h"
#include "third_party/blink/renderer/platform/wtf/text/convert_to_8bit_hash_reader.h"
#include "third_party/blink/renderer/platform/wtf/text/string_hash.h"
#include "third_party/blink/renderer/platform/wtf/text/utf8.h"

namespace WTF {

namespace {

ALWAYS_INLINE static bool IsOnly8Bit(base::span<const UChar> chars) {
  return std::ranges::all_of(
      chars, [](UChar ch) { return static_cast<uint16_t>(ch) <= 255; });
}

class UCharBuffer {
 public:
  ALWAYS_INLINE static unsigned ComputeHashAndMaskTop8Bits(
      const UChar* chars,
      unsigned len,
      AtomicStringUCharEncoding encoding) {
    if (encoding == AtomicStringUCharEncoding::kIs8Bit ||
        (encoding == AtomicStringUCharEncoding::kUnknown &&
         IsOnly8Bit({chars, len}))) {
      // This is a very common case from HTML parsing, so we take
      // the size penalty from inlining.
      return StringHasher::ComputeHashAndMaskTop8BitsInline<
          ConvertTo8BitHashReader>((const char*)chars, len);
    } else {
      return StringHasher::ComputeHashAndMaskTop8Bits((const char*)chars,
                                                      len * 2);
    }
  }

  ALWAYS_INLINE UCharBuffer(base::span<const UChar> chars,
                            AtomicStringUCharEncoding encoding)
      : characters_(chars.data()),
        length_(chars.size()),
        hash_(ComputeHashAndMaskTop8Bits(chars.data(), length_, encoding)),
        encoding_(encoding) {}

  base::span<const UChar> characters() const { return {characters_, length_}; }
  unsigned length() const { return length_; }
  unsigned hash() const { return hash_; }
  AtomicStringUCharEncoding encoding() const { return encoding_; }

  scoped_refptr<StringImpl> CreateStringImpl() const {
    switch (encoding_) {
      case AtomicStringUCharEncoding::kUnknown:
        return StringImpl::Create8BitIfPossible({characters_, length_});
      case AtomicStringUCharEncoding::kIs8Bit:
        return String::Make8BitFrom16BitSource({characters_, length_})
            .ReleaseImpl();
      case AtomicStringUCharEncoding::kIs16Bit:
        return StringImpl::Create({characters_, length_});
    }
  }

 private:
  const UChar* characters_;
  const unsigned length_;
  const unsigned hash_;
  const AtomicStringUCharEncoding encoding_;
};

struct UCharBufferTranslator {
  static unsigned GetHash(const UCharBuffer& buf) { return buf.hash(); }

  static bool Equal(StringImpl* const& str, const UCharBuffer& buf) {
    return WTF::Equal(str, buf.characters());
  }

  static void Store(StringImpl*& location,
                    const UCharBuffer& buf,
                    unsigned hash) {
    location = buf.CreateStringImpl().release();
    location->SetHash(hash);
    location->SetIsAtomic();
  }
};

struct StringViewLookupTranslator {
  static unsigned GetHash(const StringView& buf) {
    StringImpl* shared_impl = buf.SharedImpl();
    if (shared_impl) [[likely]] {
      return shared_impl->GetHash();
    }

    if (buf.Is8Bit()) {
      return StringHasher::ComputeHashAndMaskTop8Bits(
          base::as_chars(buf.Span8()).data(), buf.length());
    } else if (IsOnly8Bit(buf.Span16())) {
      return StringHasher::ComputeHashAndMaskTop8Bits<ConvertTo8BitHashReader>(
          base::as_chars(buf.RawByteSpan()).data(), buf.length());
    } else {
      return StringHasher::ComputeHashAndMaskTop8Bits(
          base::as_chars(buf.RawByteSpan()).data(), buf.length() * 2);
    }
  }

  static bool Equal(StringImpl* const& str, const StringView& buf) {
    return *str == buf;
  }
};

// Allows lookups of the ASCII-lowercase version of a string without actually
// allocating memory to store it. Instead, the translator computes the results
// of hash and equality computations as if we had done so. Strings reaching
// these methods are expected to not be lowercase.

// NOTE: Interestingly, the SIMD paths here improve on code size, not just
// on performance.
template <typename CharType>
struct ASCIILowerHashReader {
  static constexpr unsigned kCompressionFactor = 1;
  static constexpr unsigned kExpansionFactor = 1;

  ALWAYS_INLINE static uint64_t Lowercase(CharType ch) {
    return ToASCIILower(ch);
  }

  ALWAYS_INLINE static uint64_t Read64(const uint8_t* ptr) {
    const CharType* p = reinterpret_cast<const CharType*>(ptr);
#if defined(__SSE2__) || defined(__ARM_NEON__)
    CharType b __attribute__((vector_size(8)));
    memcpy(&b, p, sizeof(b));
    b |= (b >= 'A' & b <= 'Z') & 0x20;
    uint64_t ret;
    memcpy(&ret, &b, sizeof(b));
    return ret;
#else
    if constexpr (sizeof(CharType) == 2) {
      return Lowercase(p[0]) | (Lowercase(p[1]) << 16) |
             (Lowercase(p[2]) << 32) | (Lowercase(p[3]) << 48);
    } else {
      return Lowercase(p[0]) | (Lowercase(p[1]) << 8) |
             (Lowercase(p[2]) << 16) | (Lowercase(p[3]) << 24) |
             (Lowercase(p[4]) << 32) | (Lowercase(p[5]) << 40) |
             (Lowercase(p[6]) << 48) | (Lowercase(p[7]) << 56);
    }
#endif
  }
  ALWAYS_INLINE static uint64_t Read32(const uint8_t* ptr) {
    const CharType* p = reinterpret_cast<const CharType*>(ptr);
#if defined(__SSE2__) || defined(__ARM_NEON__)
    CharType b __attribute__((vector_size(4)));
    memcpy(&b, p, sizeof(b));
    b |= (b >= 'A' & b <= 'Z') & 0x20;
    uint32_t ret;
    memcpy(&ret, &b, sizeof(b));
    return ret;
#else
    if constexpr (sizeof(CharType) == 2) {
      return Lowercase(p[0]) | (Lowercase(p[1]) << 16);
    } else {
      return Lowercase(p[0]) | (Lowercase(p[1]) << 8) |
             (Lowercase(p[2]) << 16) | (Lowercase(p[3]) << 24);
    }
#endif
  }

  ALWAYS_INLINE static uint64_t ReadSmall(const uint8_t* p, size_t k) {
    if constexpr (sizeof(CharType) == 2) {
      // This is fine, but the reasoning is a bit subtle. If we get here,
      // we have to be a UTF-16 string, and since ReadSmall can only be called
      // with 1, 2 or 3, it means we must be a UTF-16 string with a single
      // code point (i.e., two bytes). Furthermore, we know that this code point
      // must be above 0xFF, or the HashTranslatorLowercaseBuffer constructor
      // would not have called us. Thus, ToASCIILower() on this code point would
      // do nothing, and this, we should just hash it exactly as PlainHashReader
      // would have done.
      DCHECK_EQ(k, 2u);
      k = 2;
      return (uint64_t{p[0]} << 56) | (uint64_t{p[k >> 1]} << 32) |
             uint64_t{p[k - 1]};
    } else {
      return (Lowercase(p[0]) << 56) | (Lowercase(p[k >> 1]) << 32) |
             Lowercase(p[k - 1]);
    }
  }
};

// Combines ASCIILowerHashReader and ConvertTo8BitHashReader into one.
// This is an obscure case that we only need for completeness,
// so it is fine that it's not all that optimized.
struct ASCIIConvertTo8AndLowerHashReader {
  static constexpr unsigned kCompressionFactor = 2;
  static constexpr unsigned kExpansionFactor = 1;

  static uint64_t Lowercase(uint16_t ch) { return ToASCIILower(ch); }

  static uint64_t Read64(const uint8_t* ptr) {
    const uint16_t* p = reinterpret_cast<const uint16_t*>(ptr);
    return Lowercase(p[0]) | (Lowercase(p[1]) << 8) | (Lowercase(p[2]) << 16) |
           (Lowercase(p[3]) << 24) | (Lowercase(p[4]) << 32) |
           (Lowercase(p[5]) << 40) | (Lowercase(p[6]) << 48) |
           (Lowercase(p[7]) << 56);
  }
  static uint64_t Read32(const uint8_t* ptr) {
    const uint16_t* p = reinterpret_cast<const uint16_t*>(ptr);
    return Lowercase(p[0]) | (Lowercase(p[1]) << 8) | (Lowercase(p[2]) << 16) |
           (Lowercase(p[3]) << 24);
  }
  static uint64_t ReadSmall(const uint8_t* ptr, size_t k) {
    const uint16_t* p = reinterpret_cast<const uint16_t*>(ptr);
    return (Lowercase(p[0]) << 56) | (Lowercase(p[k >> 1]) << 32) |
           Lowercase(p[k - 1]);
  }
};

class HashTranslatorLowercaseBuffer {
 public:
  explicit HashTranslatorLowercaseBuffer(const StringImpl* impl) : impl_(impl) {
    // We expect already lowercase strings to take another path in
    // Element::WeakLowercaseIfNecessary.
    DCHECK(!impl_->IsLowerASCII());
    if (impl_->Is8Bit()) {
      hash_ =
          StringHasher::ComputeHashAndMaskTop8Bits<ASCIILowerHashReader<LChar>>(
              (const char*)impl_->Characters8(), impl_->length());
    } else {
      if (IsOnly8Bit(impl_->Span16())) {
        hash_ = StringHasher::ComputeHashAndMaskTop8Bits<
            ASCIIConvertTo8AndLowerHashReader>(
            (const char*)impl_->Characters16(), impl_->length());
      } else {
        hash_ = StringHasher::ComputeHashAndMaskTop8Bits<
            ASCIILowerHashReader<UChar>>((const char*)impl_->Characters16(),
                                         impl_->length() * 2);
      }
    }
  }

  const StringImpl* impl() const { return impl_; }
  unsigned hash() const { return hash_; }

 private:
  const StringImpl* impl_;
  unsigned hash_;
};
struct LowercaseLookupTranslator {
  // Computes the hash that |query| would have if it were first converted to
  // ASCII lowercase.
  static unsigned GetHash(const HashTranslatorLowercaseBuffer& buf) {
    return buf.hash();
  }

  // Returns true if the hashtable |bucket| contains a string which is the ASCII
  // lowercase version of |query|.
  static bool Equal(StringImpl* const& bucket,
                    const HashTranslatorLowercaseBuffer& buf) {
    // This is similar to EqualIgnoringASCIICase, but not the same.
    // In particular, it validates that |bucket| is a lowercase version of
    // |buf.impl()|.
    //
    // Unlike EqualIgnoringASCIICase, it returns false if they are equal
    // ignoring ASCII case but |bucket| contains an uppercase ASCII character.
    //
    // However, similar optimizations are used here as there, so these should
    // have generally similar correctness and performance constraints.
    const StringImpl* query = buf.impl();
    if (bucket->length() != query->length())
      return false;
    if (bucket->Bytes() == query->Bytes() &&
        bucket->Is8Bit() == query->Is8Bit())
      return query->IsLowerASCII();
    return WTF::VisitCharacters(*bucket, [&](auto bch) {
      return WTF::VisitCharacters(*query, [&](auto qch) {
        wtf_size_t len = query->length();
        for (wtf_size_t i = 0; i < len; ++i) {
          if (bch[i] != ToASCIILower(qch[i]))
            return false;
        }
        return true;
      });
    });
  }
};

}  // namespace

AtomicStringTable& AtomicStringTable::Instance() {
  DEFINE_THREAD_SAFE_STATIC_LOCAL(AtomicStringTable, table, ());
  return table;
}

AtomicStringTable::AtomicStringTable() {
  base::AutoLock auto_lock(lock_);
  for (StringImpl* string : StringImpl::AllStaticStrings().Values()) {
    DCHECK(string->length());
    AddNoLock(string);
  }
}

void AtomicStringTable::ReserveCapacity(unsigned size) {
  base::AutoLock auto_lock(lock_);
  table_.ReserveCapacityForSize(size);
}

template <typename T, typename HashTranslator>
scoped_refptr<StringImpl> AtomicStringTable::AddToStringTable(const T& value) {
  // Lock not only protects access to the table, it also guarantees
  // mutual exclusion with the refcount decrement on removal.
  base::AutoLock auto_lock(lock_);
  HashSet<StringImpl*>::AddResult add_result =
      table_.AddWithTranslator<HashTranslator>(value);

  // If the string is newly-translated, then we need to adopt it.
  // The boolean in the pair tells us if that is so.
  return add_result.is_new_entry
             ? base::AdoptRef(*add_result.stored_value)
             : base::WrapRefCounted(*add_result.stored_value);
}

scoped_refptr<StringImpl> AtomicStringTable::Add(
    const UChar* s,
    unsigned length,
    AtomicStringUCharEncoding encoding) {
  if (!s)
    return nullptr;

  if (!length)
    return StringImpl::empty_;

  UCharBuffer buffer({s, length}, encoding);
  return AddToStringTable<UCharBuffer, UCharBufferTranslator>(buffer);
}

class LCharBuffer {
 public:
  ALWAYS_INLINE explicit LCharBuffer(base::span<const LChar> chars)
      : characters_(chars.data()),
        length_(chars.size()),
        // This is a common path from V8 strings, so inlining is worth it.
        hash_(StringHasher::ComputeHashAndMaskTop8BitsInline(
            base::as_chars(chars).data(),
            chars.size())) {}

  base::span<const LChar> characters() const { return {characters_, length_}; }
  unsigned hash() const { return hash_; }

 private:
  const LChar* characters_;
  const unsigned length_;
  const unsigned hash_;
};

struct LCharBufferTranslator {
  static unsigned GetHash(const LCharBuffer& buf) { return buf.hash(); }

  static bool Equal(StringImpl* const& str, const LCharBuffer& buf) {
    return WTF::Equal(str, buf.characters());
  }

  static void Store(StringImpl*& location,
                    const LCharBuffer& buf,
                    unsigned hash) {
    auto string = StringImpl::Create(buf.characters());
    location = string.release();
    location->SetHash(hash);
    location->SetIsAtomic();
  }
};

scoped_refptr<StringImpl> AtomicStringTable::Add(
    const StringView& string_view) {
  if (string_view.IsNull()) {
    return nullptr;
  }

  if (string_view.empty()) {
    return StringImpl::empty_;
  }

  if (string_view.Is8Bit()) {
    LCharBuffer buffer(string_view.Span8());
    return AddToStringTable<LCharBuffer, LCharBufferTranslator>(buffer);
  }
  UCharBuffer buffer(string_view.Span16(), AtomicStringUCharEncoding::kUnknown);
  return AddToStringTable<UCharBuffer, UCharBufferTranslator>(buffer);
}

scoped_refptr<StringImpl> AtomicStringTable::Add(const LChar* s,
                                                 unsigned length) {
  if (!s)
    return nullptr;

  if (!length)
    return StringImpl::empty_;

  LCharBuffer buffer({s, length});
  return AddToStringTable<LCharBuffer, LCharBufferTranslator>(buffer);
}

StringImpl* AtomicStringTable::AddNoLock(StringImpl* string) {
  auto result = table_.insert(string);
  StringImpl* entry = *result.stored_value;
  if (result.is_new_entry)
    entry->SetIsAtomic();

  DCHECK(!string->IsStatic() || entry->IsStatic());
  return entry;
}

scoped_refptr<StringImpl> AtomicStringTable::Add(StringImpl* string) {
  if (!string->length())
    return StringImpl::empty_;

  // Lock not only protects access to the table, it also guarantess
  // mutual exclusion with the refcount decrement on removal.
  base::AutoLock auto_lock(lock_);
  return base::WrapRefCounted(AddNoLock(string));
}

scoped_refptr<StringImpl> AtomicStringTable::Add(
    scoped_refptr<StringImpl>&& string) {
  if (!string->length())
    return StringImpl::empty_;

  // Lock not only protects access to the table, it also guarantess
  // mutual exclusion with the refcount decrement on removal.
  base::AutoLock auto_lock(lock_);
  StringImpl* entry = AddNoLock(string.get());
  if (entry == string.get())
    return std::move(string);

  return base::WrapRefCounted(entry);
}

scoped_refptr<StringImpl> AtomicStringTable::AddUTF8(
    const uint8_t* characters_start,
    const uint8_t* characters_end) {
  bool seen_non_ascii = false;
  bool seen_non_latin1 = false;
  unsigned utf16_length = unicode::CalculateStringLengthFromUTF8(
      characters_start, characters_end, seen_non_ascii, seen_non_latin1);
  if (!seen_non_ascii) {
    return Add((const LChar*)characters_start, utf16_length);
  }

  auto utf16_buf = base::HeapArray<UChar>::Uninit(utf16_length);
  base::span<const uint8_t> source_buffer(
      reinterpret_cast<const uint8_t*>(characters_start),
      static_cast<size_t>(characters_end - characters_start));
  if (unicode::ConvertUTF8ToUTF16(source_buffer, utf16_buf).status !=
      unicode::kConversionOK) {
    NOTREACHED();
  }

  UCharBuffer buffer(utf16_buf, seen_non_latin1
                                    ? AtomicStringUCharEncoding::kIs16Bit
                                    : AtomicStringUCharEncoding::kIs8Bit);
  return AddToStringTable<UCharBuffer, UCharBufferTranslator>(buffer);
}

AtomicStringTable::WeakResult AtomicStringTable::WeakFindSlowForTesting(
    const StringView& string) {
  DCHECK(string.length());
  base::AutoLock auto_lock(lock_);
  const auto& it = table_.Find<StringViewLookupTranslator>(string);
  if (it == table_.end())
    return WeakResult();
  return WeakResult(*it);
}

AtomicStringTable::WeakResult AtomicStringTable::WeakFindLowercase(
    const AtomicString& string) {
  DCHECK(!string.empty());
  DCHECK(!string.IsLowerASCII());
  DCHECK(string.length());
  HashTranslatorLowercaseBuffer buffer(string.Impl());
  base::AutoLock auto_lock(lock_);
  const auto& it = table_.Find<LowercaseLookupTranslator>(buffer);
  if (it == table_.end())
    return WeakResult();
  DCHECK(StringView(*it).IsLowerASCII());
  DCHECK(EqualIgnoringASCIICase(*it, string));
  return WeakResult(*it);
}

bool AtomicStringTable::ReleaseAndRemoveIfNeeded(StringImpl* string) {
  DCHECK(string->IsAtomic());
  base::AutoLock auto_lock(lock_);
  // Double check that the refcount is still 1. Because Add() could
  // have added a new reference after the load in StringImpl::Release.
  if (string->ref_count_.fetch_sub(1, std::memory_order_acq_rel) != 1)
    return false;

  auto iterator = table_.find(string);
  CHECK_NE(iterator, table_.end());
  table_.erase(iterator);
  // Indicate that something was removed.
  return true;
}

}  // namespace WTF