1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
|
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2013 Apple Inc. All rights
* reserved.
* Copyright (C) 2009 Google Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#ifndef THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_TEXT_STRING_IMPL_H_
#define THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_TEXT_STRING_IMPL_H_
#include <limits.h>
#include <string.h>
#include <array>
#include <atomic>
#include <functional>
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/dcheck_is_on.h"
#include "base/functional/callback_forward.h"
#include "base/memory/ref_counted.h"
#include "base/numerics/checked_math.h"
#include "base/numerics/safe_conversions.h"
#include "build/build_config.h"
#include "third_party/blink/renderer/platform/wtf/allocator/allocator.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
#include "third_party/blink/renderer/platform/wtf/hash_map.h"
#include "third_party/blink/renderer/platform/wtf/text/ascii_ctype.h"
#include "third_party/blink/renderer/platform/wtf/text/ascii_fast_path.h"
#include "third_party/blink/renderer/platform/wtf/text/number_parsing_options.h"
#include "third_party/blink/renderer/platform/wtf/text/string_hasher.h"
#include "third_party/blink/renderer/platform/wtf/text/wtf_uchar.h"
#include "third_party/blink/renderer/platform/wtf/vector.h"
#include "third_party/blink/renderer/platform/wtf/wtf_export.h"
#if BUILDFLAG(IS_APPLE)
#include "base/apple/scoped_cftyperef.h"
typedef const struct __CFString* CFStringRef;
#endif
#ifdef __OBJC__
@class NSString;
#endif
namespace WTF {
enum TextCaseSensitivity {
kTextCaseSensitive,
kTextCaseASCIIInsensitive,
};
// Computes a standard StringHasher string for the given buffer,
// with the caveat that the buffer may contain 8-bit data only.
// In that case, it is converted from UChar to LChar on the fly,
// so that we return the same hash as if we hashed the string as
// LChar to begin with. This ensures that the same code points
// are hashed to the same value, even if someone called e.g.
// Ensure16Bit() on the string at some point.
WTF_EXPORT unsigned ComputeHashForWideString(const UChar* str, unsigned length);
enum StripBehavior { kStripExtraWhiteSpace, kDoNotStripWhiteSpace };
typedef bool (*CharacterMatchFunctionPtr)(UChar);
typedef bool (*IsWhiteSpaceFunctionPtr)(UChar);
typedef HashMap<wtf_size_t, StringImpl*, AlreadyHashedTraits>
StaticStringsTable;
// You can find documentation about this class in this doc:
// https://chromium.googlesource.com/chromium/src/+/HEAD/third_party/blink/renderer/platform/wtf/text/README.md
class WTF_EXPORT StringImpl {
private:
// StringImpls are allocated out of the WTF buffer partition.
void* operator new(size_t);
void* operator new(size_t, void* ptr) { return ptr; }
void operator delete(void*);
// Used to construct static strings, which have a special ref_count_ that can
// never hit zero. This means that the static string will never be destroyed.
enum ConstructEmptyStringTag { kConstructEmptyString };
explicit StringImpl(ConstructEmptyStringTag)
: length_(0),
hash_and_flags_(kAsciiPropertyCheckDone | kContainsOnlyAscii |
kIsLowerAscii | kIs8Bit | kIsStatic) {
// Ensure that the hash is computed so that AtomicStringHash can call
// existingHash() with impunity. The empty string is special because it
// is never entered into AtomicString's HashKey, but still needs to
// compare correctly.
GetHash();
}
enum ConstructEmptyString16BitTag { kConstructEmptyString16Bit };
explicit StringImpl(ConstructEmptyString16BitTag)
: length_(0),
hash_and_flags_(kAsciiPropertyCheckDone | kContainsOnlyAscii |
kIsLowerAscii | kIsStatic) {
GetHash();
}
// FIXME: there has to be a less hacky way to do this.
enum Force8Bit { kForce8BitConstructor };
StringImpl(wtf_size_t length, Force8Bit)
: length_(length), hash_and_flags_(LengthToAsciiFlags(length) | kIs8Bit) {
DCHECK(length_);
}
StringImpl(wtf_size_t length)
: length_(length), hash_and_flags_(LengthToAsciiFlags(length)) {
DCHECK(length_);
}
enum StaticStringTag { kStaticString };
StringImpl(wtf_size_t length, wtf_size_t hash, StaticStringTag)
: length_(length),
hash_and_flags_(hash << kHashShift | LengthToAsciiFlags(length) |
kIs8Bit | kIsStatic) {}
public:
REQUIRE_ADOPTION_FOR_REFCOUNTED_TYPE();
static StringImpl* empty_;
static StringImpl* empty16_bit_;
StringImpl(const StringImpl&) = delete;
StringImpl& operator=(const StringImpl&) = delete;
~StringImpl();
static void InitStatics();
static StringImpl* CreateStatic(base::span<const char> string);
static void ReserveStaticStringsCapacityForSize(wtf_size_t size);
static void FreezeStaticStrings();
static const StaticStringsTable& AllStaticStrings();
static wtf_size_t HighestStaticStringLength() {
return highest_static_string_length_;
}
static scoped_refptr<StringImpl> Create(base::span<const UChar>);
static scoped_refptr<StringImpl> Create(base::span<const LChar>);
static scoped_refptr<StringImpl> Create(
base::span<const LChar>,
ASCIIStringAttributes ascii_attributes);
static scoped_refptr<StringImpl> Create8BitIfPossible(
base::span<const UChar>);
ALWAYS_INLINE static scoped_refptr<StringImpl> Create(
base::span<const char> s) {
return Create(base::as_bytes(s));
}
// Create a StringImpl with space for `length` LChar characters. `data` will
// be the character data allocated, and _must_be_completely_filled_in_ by the
// caller.
static scoped_refptr<StringImpl> CreateUninitialized(size_t length,
base::span<LChar>& data);
// Create a StringImpl with space for `length` UChar characters. `data` will
// be the character data allocated, and _must_be_completely_filled_in_ by the
// caller.
static scoped_refptr<StringImpl> CreateUninitialized(size_t length,
base::span<UChar>& data);
wtf_size_t length() const { return length_; }
bool Is8Bit() const {
return hash_and_flags_.load(std::memory_order_relaxed) & kIs8Bit;
}
// Use Span8() instead.
UNSAFE_BUFFER_USAGE ALWAYS_INLINE const LChar* Characters8() const {
DCHECK(Is8Bit());
return reinterpret_cast<const LChar*>(this + 1);
}
// Use Span16() instead.
UNSAFE_BUFFER_USAGE ALWAYS_INLINE const UChar* Characters16() const {
DCHECK(!Is8Bit());
return reinterpret_cast<const UChar*>(this + 1);
}
ALWAYS_INLINE base::span<const LChar> Span8() const {
DCHECK(Is8Bit());
return CharacterBuffer<LChar>();
}
ALWAYS_INLINE base::span<const UChar> Span16() const {
DCHECK(!Is8Bit());
return CharacterBuffer<UChar>();
}
ALWAYS_INLINE base::span<const uint16_t> SpanUint16() const {
DCHECK(!Is8Bit());
return CharacterBuffer<uint16_t>();
}
ALWAYS_INLINE const void* Bytes() const {
return reinterpret_cast<const void*>(this + 1);
}
ALWAYS_INLINE base::span<const uint8_t> RawByteSpan() const {
return {reinterpret_cast<const uint8_t*>(this + 1),
CharactersSizeInBytes()};
}
// Create a new std::u16string based on this.
// The character content is always copied.
std::u16string ToU16String() const;
template <typename CharType>
ALWAYS_INLINE const CharType* GetCharacters() const;
size_t CharactersSizeInBytes() const {
return length() * (Is8Bit() ? sizeof(LChar) : sizeof(UChar));
}
bool IsAtomic() const {
return hash_and_flags_.load(std::memory_order_acquire) & kIsAtomic;
}
void SetIsAtomic() {
hash_and_flags_.fetch_or(kIsAtomic, std::memory_order_release);
}
void UnsetIsAtomic() {
hash_and_flags_.fetch_and(~kIsAtomic, std::memory_order_release);
}
bool IsStatic() const {
return hash_and_flags_.load(std::memory_order_relaxed) & kIsStatic;
}
bool ContainsOnlyASCIIOrEmpty() const;
bool IsLowerASCII() const;
// The high bits of 'hash' are always empty, but we prefer to store our
// flags in the low bits because it makes them slightly more efficient to
// access. So, we shift left and right when setting and getting our hash
// code.
void SetHash(wtf_size_t hash) const {
// Multiple clients assume that StringHasher is the canonical string
// hash function.
DCHECK_EQ(hash,
(Is8Bit() ? StringHasher::ComputeHashAndMaskTop8Bits(
(const char*)Characters8(), length_)
: ComputeHashForWideString(Characters16(), length_)));
DCHECK(hash); // Verify that 0 is a valid sentinel hash value.
SetHashRaw(hash);
}
bool HasHash() const { return GetHashRaw() != 0; }
wtf_size_t ExistingHash() const {
DCHECK(HasHash());
return GetHashRaw();
}
wtf_size_t GetHash() const {
if (wtf_size_t hash = GetHashRaw())
return hash;
return HashSlowCase();
}
ALWAYS_INLINE bool HasOneRef() const {
return ref_count_.load(std::memory_order_acquire) == 1;
}
ALWAYS_INLINE void AddRef() const {
if (!IsStatic()) {
uint32_t previous_ref_count =
ref_count_.fetch_add(1, std::memory_order_relaxed);
CHECK_NE(previous_ref_count, std::numeric_limits<uint32_t>::max());
#if DCHECK_IS_ON()
ref_count_change_count_++;
#endif
}
}
// We explicitly remove the AddRef and Release operations from the tsan
// bots because even though all data races in the C++ memory model sense
// are undefined behavior, the use of atomics prevents a data race on
// ref_count_ itself.
// Sharing the AtomicStringTable causes other races outside of ref_count_
// that could lead to an early deletion of the StringImpl while other
// threads are still holding references to it.
// Possible races:
// 1. Races where ref_count_ doesn't reach zero are not harmful.
// 2. Races involving only release calls are not harmful. The
// atomicity of the operations guarantee that only the last subtraction to
// be executed will trigger the deletion of the StringImpl.
// 3. A fetch_add on thread A is ordered after a fetch_sub on thread B that
// reaches 0. This can only happen on an AddRef() reached through the
// AtomicStringTable::Add* methods, otherwise there should be another
// reference on thread A, and the Release() on thread B could not have
// reached 0. This race is mitigated by the fact that the Atomic String
// Table Add and Removal operations (including the fetch_sub to 0) are
// done under a lock.
ALWAYS_INLINE void Release() const {
if (!IsStatic()) {
// This can be a relaxed load as long as the subtraction is performed
// with acq_rel order. Any modification to `ref_count_` reordered after
// this load will be caught by the while loop or the fetch_sub inside
// DestroyIfNeeded().
uint32_t current_ref = ref_count_.load(std::memory_order_relaxed);
#if DCHECK_IS_ON()
// In non-DCHECK builds, we can save a bit of time in micro-benchmarks by
// not checking the arithmetic. We hope that checking in DCHECK builds is
// enough to catch implementation bugs, and that implementation bugs are
// the only way we'd experience underflow.
DCHECK_NE(current_ref, 0u);
ref_count_change_count_++;
#endif
// This is a fancy fetch_sub() that allows the actual decrement to 0 to
// be delegated to the DestroyIfNeeded() function. The result of this
// compare_exchange_weak() will never be 0. Without this, there would be
// a potential race by reaching 0 and calling AddRef and Release on
// another thread before the deletion of the string in this thread,
// triggering the removal and destruction of the string twice.
do {
if (current_ref == 1) {
DestroyIfNeeded();
return;
}
} while (!ref_count_.compare_exchange_weak(current_ref, current_ref - 1,
std::memory_order_acq_rel));
}
}
#if DCHECK_IS_ON()
unsigned int RefCountChangeCountForTesting() const {
return ref_count_change_count_;
}
void ResetRefCountChangeCountForTesting() { ref_count_change_count_ = 0; }
#endif
ALWAYS_INLINE void Adopted() const {}
// FIXME: Does this really belong in StringImpl?
template <typename T>
static void CopyChars(base::span<T> destination, base::span<const T> source) {
destination.copy_from(source);
}
ALWAYS_INLINE static void CopyChars(base::span<UChar> destination,
base::span<const LChar> source) {
CHECK_EQ(destination.size(), source.size());
for (size_t i = 0; i < source.size(); ++i) {
destination[i] = source[i];
}
}
// It is no longer required to create isolated copies for thread-safety
// purposes.
scoped_refptr<StringImpl> IsolatedCopy() const;
scoped_refptr<StringImpl> Substring(wtf_size_t pos,
wtf_size_t len = UINT_MAX) const;
UChar operator[](wtf_size_t i) const {
SECURITY_DCHECK(i < length_);
if (Is8Bit())
return Characters8()[i];
return Characters16()[i];
}
UChar32 CharacterStartingAt(wtf_size_t);
bool ContainsOnlyWhitespaceOrEmpty();
int ToInt(NumberParsingOptions, bool* ok) const;
wtf_size_t ToUInt(NumberParsingOptions, bool* ok) const;
int64_t ToInt64(NumberParsingOptions, bool* ok) const;
uint64_t ToUInt64(NumberParsingOptions, bool* ok) const;
wtf_size_t HexToUIntStrict(bool* ok);
uint64_t HexToUInt64Strict(bool* ok);
// FIXME: Like NumberParsingOptions::kStrict, these give false for "ok" when
// there is trailing garbage. Like NumberParsingOptions::kLoose, these return
// the value when there is trailing garbage. It would be better if these were
// more consistent with the above functions instead.
double ToDouble(bool* ok = nullptr);
float ToFloat(bool* ok = nullptr);
scoped_refptr<StringImpl> LowerASCII();
scoped_refptr<StringImpl> UpperASCII();
scoped_refptr<StringImpl> Fill(UChar);
// FIXME: Do we need fill(char) or can we just do the right thing if UChar is
// ASCII?
scoped_refptr<StringImpl> FoldCase();
scoped_refptr<StringImpl> Truncate(wtf_size_t length);
wtf_size_t LengthWithStrippedWhiteSpace() const;
scoped_refptr<StringImpl> StripWhiteSpace();
scoped_refptr<StringImpl> StripWhiteSpace(IsWhiteSpaceFunctionPtr);
scoped_refptr<StringImpl> SimplifyWhiteSpace(
StripBehavior = kStripExtraWhiteSpace);
scoped_refptr<StringImpl> SimplifyWhiteSpace(
IsWhiteSpaceFunctionPtr,
StripBehavior = kStripExtraWhiteSpace);
scoped_refptr<StringImpl> RemoveCharacters(CharacterMatchFunctionPtr);
template <typename CharType>
ALWAYS_INLINE scoped_refptr<StringImpl> RemoveCharacters(
base::span<const CharType> characters,
CharacterMatchFunctionPtr);
// Remove characters between [start, start+lengthToRemove). The range is
// clamped to the size of the string. Does nothing if start >= length().
scoped_refptr<StringImpl> Remove(wtf_size_t start,
wtf_size_t length_to_remove = 1);
// Find characters.
wtf_size_t Find(LChar character, wtf_size_t start = 0) const;
wtf_size_t Find(char character, wtf_size_t start = 0) const;
wtf_size_t Find(UChar character, wtf_size_t start = 0) const;
wtf_size_t Find(CharacterMatchFunctionPtr, wtf_size_t index = 0) const;
wtf_size_t Find(base::RepeatingCallback<bool(UChar)> match_callback,
wtf_size_t index = 0) const;
// Find substrings.
wtf_size_t Find(const StringView&, wtf_size_t index = 0) const;
// Unicode aware case insensitive string matching. Non-ASCII characters might
// match to ASCII characters. This function is rarely used to implement web
// platform features. See crbug.com/40476285.
wtf_size_t DeprecatedFindIgnoringCase(const StringView&,
wtf_size_t index = 0) const;
wtf_size_t FindIgnoringASCIICase(const StringView&,
wtf_size_t index = 0) const;
wtf_size_t ReverseFind(UChar, wtf_size_t index = UINT_MAX) const;
wtf_size_t ReverseFind(const StringView&, wtf_size_t index = UINT_MAX) const;
bool StartsWith(UChar) const;
bool StartsWith(const StringView&) const;
// Unicode aware case insensitive string matching. Non-ASCII characters might
// match to ASCII characters. This function is rarely used to implement web
// platform features. See crbug.com/40476285.
bool DeprecatedStartsWithIgnoringCase(const StringView&) const;
bool StartsWithIgnoringCaseAndAccents(const StringView&) const;
bool StartsWithIgnoringASCIICase(const StringView&) const;
bool EndsWith(UChar) const;
bool EndsWith(const StringView&) const;
// Unicode aware case insensitive string matching. Non-ASCII characters might
// match to ASCII characters. This function is rarely used to implement web
// platform features. See crbug.com/40476285.
bool DeprecatedEndsWithIgnoringCase(const StringView&) const;
bool EndsWithIgnoringASCIICase(const StringView&) const;
// Replace parts of the string.
scoped_refptr<StringImpl> Replace(UChar pattern, UChar replacement);
scoped_refptr<StringImpl> Replace(UChar pattern,
const StringView& replacement);
scoped_refptr<StringImpl> Replace(const StringView& pattern,
const StringView& replacement);
scoped_refptr<StringImpl> Replace(wtf_size_t index,
wtf_size_t length_to_replace,
const StringView& replacement);
scoped_refptr<StringImpl> UpconvertedString();
// Copy characters from string starting at `start` up until the size of
// `buffer` or the end of the string is reached. Returns the actual number of
// characters copied.
size_t CopyTo(base::span<UChar> buffer, wtf_size_t start) const;
// Append characters from this string into a buffer. Expects the buffer to
// have the methods:
// append(const UChar*, wtf_size_t length);
// append(const LChar*, wtf_size_t length);
// StringBuilder and Vector conform to this protocol.
template <typename BufferType>
void AppendTo(BufferType&,
wtf_size_t start = 0,
wtf_size_t length = UINT_MAX) const;
#if BUILDFLAG(IS_APPLE)
base::apple::ScopedCFTypeRef<CFStringRef> CreateCFString();
#endif
#ifdef __OBJC__
operator NSString*();
#endif
static const std::array<UChar, 256> kLatin1CaseFoldTable;
private:
friend class AtomicStringTable;
enum Flags {
// These two fields are never modified for the lifetime of the StringImpl.
// It is therefore safe to read them with a relaxed operation.
kIs8Bit = 1 << 0,
kIsStatic = 1 << 1,
// This is the only flag that can be both set and unset. It is safe to do
// so because all accesses are mediated by the same atomic string table and
// so protected by a mutex. Thus these accesses can also be relaxed.
kIsAtomic = 1 << 2,
// These bits are set atomically together. They are initially all
// zero, and like the hash computation below, become non-zero only as part
// of a single atomic bitwise or. Thus concurrent loads will always observe
// either a state where the ASCII property check has not been completed and
// all bits are zero, or a state where the state is fully populated.
//
// The reason kIsLowerAscii is cached but upper ascii is not is that
// DOM attributes APIs require a lowercasing check making it fairly hot.
kAsciiPropertyCheckDone = 1 << 3,
kContainsOnlyAscii = 1 << 4,
kIsLowerAscii = 1 << 5,
// The last 24 bits (past kHashShift) are reserved for the hash.
// These bits are all zero if the hash is uncomputed, and the hash is
// atomically stored with bitwise or.
//
// Therefore a relaxed read can be used, and will either observe an
// uncomputed hash (if the fetch_or is not yet visible on this thread)
// or the correct hash (if it is). It is possible for a thread to compute
// the hash for a second time if there is a race. This is safe, since
// storing the same bits again with a bitwise or is idempotent.
};
// Hash value is 24 bits.
constexpr static int kHashShift = (sizeof(unsigned) * 8) - 24;
static inline constexpr uint32_t LengthToAsciiFlags(int length) {
return length
? 0
: kAsciiPropertyCheckDone | kContainsOnlyAscii | kIsLowerAscii;
}
static inline uint32_t ASCIIStringAttributesToFlags(
ASCIIStringAttributes ascii_attributes) {
uint32_t flags = kAsciiPropertyCheckDone;
if (ascii_attributes.contains_only_ascii)
flags |= kContainsOnlyAscii;
if (ascii_attributes.is_lower_ascii)
flags |= kIsLowerAscii;
return flags;
}
void SetHashRaw(unsigned hash_val) const {
// Setting the hash is idempotent so fetch_or() is sufficient. DCHECK()
// as a sanity check.
unsigned previous_value = hash_and_flags_.fetch_or(
hash_val << kHashShift, std::memory_order_relaxed);
DCHECK(((previous_value >> kHashShift) == 0) ||
((previous_value >> kHashShift) == hash_val));
}
unsigned GetHashRaw() const {
return hash_and_flags_.load(std::memory_order_relaxed) >> kHashShift;
}
template <typename CharType>
static size_t AllocationSize(wtf_size_t length) {
static_assert(
sizeof(CharType) > 1,
"Don't use this template with 1-byte chars; use a template "
"specialization to save time and code-size by avoiding a CheckMul.");
return base::CheckAdd(sizeof(StringImpl),
base::CheckMul(length, sizeof(CharType)))
.ValueOrDie();
}
template <typename CharType>
ALWAYS_INLINE base::span<CharType> CharacterBuffer() {
// SAFETY: The AllocationSize<CharType>() helper function computes a size
// that includes `length_` UChar/LChar characters in addition to the size
// required for the StringImpl.
return UNSAFE_BUFFERS(
base::span(reinterpret_cast<CharType*>(this + 1), length_));
}
template <typename CharType>
ALWAYS_INLINE base::span<const CharType> CharacterBuffer() const {
return const_cast<StringImpl*>(this)->CharacterBuffer<CharType>();
}
template <typename DestCharType,
typename SrcCharType,
typename ReplacementCharType>
void DoReplace(base::span<const SrcCharType> source,
UChar pattern,
base::span<const ReplacementCharType> replacement,
base::span<DestCharType> dest) const;
template <typename DestCharType>
void DoReplace(const StringView& pattern,
const StringView& replacement,
base::span<DestCharType> dest) const;
template <class UCharPredicate>
scoped_refptr<StringImpl> StripMatchedCharacters(UCharPredicate);
template <typename CharType, class UCharPredicate>
scoped_refptr<StringImpl> SimplifyMatchedCharactersToSpace(
base::span<const CharType>,
UCharPredicate,
StripBehavior);
NOINLINE wtf_size_t HashSlowCase() const;
void DestroyIfNeeded() const;
// Calculates the kContainsOnlyAscii and kIsLowerAscii flags. Returns
// a bitfield with those 2 values.
unsigned ComputeASCIIFlags() const;
#if DCHECK_IS_ON()
std::string AsciiForDebugging() const;
#endif
static wtf_size_t highest_static_string_length_;
#if DCHECK_IS_ON()
void AssertHashIsCorrect() {
DCHECK(HasHash());
DCHECK_EQ(ExistingHash(), StringHasher::ComputeHashAndMaskTop8Bits(
(const char*)Characters8(), length()));
}
#endif
#if DCHECK_IS_ON()
mutable std::atomic<unsigned> ref_count_change_count_{0};
#endif
// TODO (crbug.com/1083392): Use base::AtomicRefCount.
mutable std::atomic_uint32_t ref_count_{1};
const unsigned length_;
mutable std::atomic<uint32_t> hash_and_flags_;
};
template <>
ALWAYS_INLINE const LChar* StringImpl::GetCharacters<LChar>() const {
return Characters8();
}
template <>
ALWAYS_INLINE const UChar* StringImpl::GetCharacters<UChar>() const {
return Characters16();
}
// The following template specialization can be moved to the class declaration
// once we officially switch to C++17 (we need C++ DR727 to be implemented).
template <>
ALWAYS_INLINE size_t StringImpl::AllocationSize<LChar>(wtf_size_t length) {
static_assert(sizeof(LChar) == 1, "sizeof(LChar) should be 1.");
return base::CheckAdd(sizeof(StringImpl), length).ValueOrDie();
}
// EqualToCString() can be faster than operator== because operator== creates
// a StringView, and it requires strlen(latin1).
//
// `latin1` must not be nullptr, and should point Latin-1 characters.
WTF_EXPORT bool EqualToCString(const StringView& a, const char* latin1);
WTF_EXPORT bool EqualToCString(const StringImpl* a, const char* latin1);
WTF_EXPORT bool Equal(const StringImpl*, const StringImpl*);
WTF_EXPORT bool Equal(const StringImpl*, base::span<const LChar>);
WTF_EXPORT bool Equal(const StringImpl*, base::span<const UChar>);
inline bool Equal(const StringImpl* a, base::span<const char> b) {
return Equal(a, base::as_bytes(b));
}
WTF_EXPORT bool EqualNonNull(const StringImpl* a, const StringImpl* b);
ALWAYS_INLINE bool StringImpl::ContainsOnlyASCIIOrEmpty() const {
uint32_t flags = hash_and_flags_.load(std::memory_order_relaxed);
if (flags & kAsciiPropertyCheckDone)
return flags & kContainsOnlyAscii;
return ComputeASCIIFlags() & kContainsOnlyAscii;
}
ALWAYS_INLINE bool StringImpl::IsLowerASCII() const {
uint32_t flags = hash_and_flags_.load(std::memory_order_relaxed);
if (flags & kAsciiPropertyCheckDone)
return flags & kIsLowerAscii;
return ComputeASCIIFlags() & kIsLowerAscii;
}
// Unicode aware case insensitive string matching. Non-ASCII characters might
// match to ASCII characters. These functions are rarely used to implement web
// platform features.
// These functions are deprecated. Use EqualIgnoringASCIICase(), or introduce
// EqualIgnoringUnicodeCase(). See crbug.com/627682
WTF_EXPORT bool DeprecatedEqualIgnoringCase(base::span<const LChar>,
base::span<const LChar>);
WTF_EXPORT bool DeprecatedEqualIgnoringCase(base::span<const UChar>,
base::span<const LChar>);
inline bool DeprecatedEqualIgnoringCase(base::span<const LChar> a,
base::span<const UChar> b) {
return DeprecatedEqualIgnoringCase(b, a);
}
WTF_EXPORT bool DeprecatedEqualIgnoringCase(base::span<const UChar>,
base::span<const UChar>);
WTF_EXPORT bool EqualIgnoringNullity(StringImpl*, StringImpl*);
template <typename CharacterTypeA, typename CharacterTypeB>
inline bool EqualIgnoringASCIICase(base::span<const CharacterTypeA> a,
base::span<const CharacterTypeB> b) {
CHECK_EQ(a.size(), b.size());
size_t length = a.size();
const CharacterTypeA* a_data = a.data();
const CharacterTypeB* b_data = b.data();
while (length--) {
// Avoid base::span::operator[] for better performance.
// SAFETY: This function ensures a_data and b_data move inside their spans.
if (UNSAFE_BUFFERS(ToASCIILower(*a_data++) != ToASCIILower(*b_data++))) {
return false;
}
}
return true;
}
WTF_EXPORT int CodeUnitCompareIgnoringASCIICase(const StringImpl*,
const StringImpl*);
WTF_EXPORT int CodeUnitCompareIgnoringASCIICase(const StringImpl*,
const LChar*);
template <typename CharType>
inline wtf_size_t Find(base::span<const CharType> characters,
CharType match_character,
wtf_size_t index = 0) {
if (index >= characters.size()) {
return kNotFound;
}
// Pass raw pointers to std::find for better performance.
const CharType* begin = base::to_address(characters.begin());
const CharType* end = base::to_address(characters.end());
const CharType* it = std::find(base::to_address(characters.begin() + index),
end, match_character);
return it == end ? kNotFound : std::distance(begin, it);
}
ALWAYS_INLINE wtf_size_t Find(base::span<const UChar> characters,
LChar match_character,
wtf_size_t index = 0) {
return Find(characters, static_cast<UChar>(match_character), index);
}
inline wtf_size_t Find(base::span<const LChar> characters,
UChar match_character,
wtf_size_t index = 0) {
if (match_character & ~0xFF)
return kNotFound;
return Find(characters, static_cast<LChar>(match_character), index);
}
template <typename CharacterType>
inline wtf_size_t Find(base::span<const CharacterType> characters,
char match_character,
wtf_size_t index = 0) {
return Find(characters, static_cast<LChar>(match_character), index);
}
template <typename CharType>
inline wtf_size_t Find(base::span<const CharType> characters,
CharacterMatchFunctionPtr match_function,
wtf_size_t index = 0) {
if (index >= characters.size()) {
return kNotFound;
}
// Pass raw pointers to std::find_if for better performance.
const CharType* begin = base::to_address(characters.begin());
const CharType* end = base::to_address(characters.end());
const CharType* it = std::find_if(
base::to_address(characters.begin() + index), end, match_function);
return it == end ? kNotFound : std::distance(begin, it);
}
// Search the `characters` span for `match_character` from the end of the span,
// and returns the found index or WTF::kNotFound.
//
// If the optional `index` parameter is specified, this function searches from
// characters[min(index, characters.size()-1)] to characters[0].
template <typename CharacterType>
inline wtf_size_t ReverseFind(base::span<const CharacterType> characters,
CharacterType match_character,
wtf_size_t index = UINT_MAX) {
const size_t length = characters.size();
if (!length)
return kNotFound;
if (index >= length)
index = length - 1;
const CharacterType* data = characters.data();
// We don't use characters[index] for better performance.
// SAFETY: The above code ensures `index` is less than characters.size().
while (UNSAFE_BUFFERS(data[index]) != match_character) {
if (!index--)
return kNotFound;
}
return index;
}
ALWAYS_INLINE wtf_size_t ReverseFind(base::span<const UChar> characters,
LChar match_character,
wtf_size_t index = UINT_MAX) {
return ReverseFind(characters, static_cast<UChar>(match_character), index);
}
inline wtf_size_t ReverseFind(base::span<const LChar> characters,
UChar match_character,
wtf_size_t index = UINT_MAX) {
if (match_character & ~0xFF)
return kNotFound;
return ReverseFind(characters, static_cast<LChar>(match_character), index);
}
inline wtf_size_t StringImpl::Find(LChar character, wtf_size_t start) const {
if (Is8Bit())
return WTF::Find(Span8(), character, start);
return WTF::Find(Span16(), character, start);
}
ALWAYS_INLINE wtf_size_t StringImpl::Find(char character,
wtf_size_t start) const {
return Find(static_cast<LChar>(character), start);
}
inline wtf_size_t StringImpl::Find(UChar character, wtf_size_t start) const {
if (Is8Bit())
return WTF::Find(Span8(), character, start);
return WTF::Find(Span16(), character, start);
}
inline wtf_size_t LengthOfNullTerminatedString(const UChar* string) {
size_t length = 0;
while (string[length] != UChar(0))
++length;
return base::checked_cast<wtf_size_t>(length);
}
template <wtf_size_t inlineCapacity>
bool EqualIgnoringNullity(const Vector<UChar, inlineCapacity>& a,
StringImpl* b) {
if (!b)
return !a.size();
if (a.size() != b->length())
return false;
if (b->Is8Bit())
return Equal(a.data(), b->Characters8(), b->length());
return Equal(a.data(), b->Characters16(), b->length());
}
template <typename CharacterType1,
typename CharacterType2,
typename Projection = std::identity>
static inline int CodeUnitCompare(base::span<const CharacterType1> c1,
base::span<const CharacterType2> c2,
Projection proj = {}) {
const size_t lmin = std::min(c1.size(), c2.size());
size_t pos = 0;
while (pos < lmin && proj(c1[pos]) == proj(c2[pos])) {
++pos;
}
if (pos < lmin) {
return proj(c1[pos]) > proj(c2[pos]) ? 1 : -1;
}
if (c1.size() == c2.size()) {
return 0;
}
return c1.size() > c2.size() ? 1 : -1;
}
static inline int CodeUnitCompare(const StringImpl* string1,
const StringImpl* string2) {
if (!string1)
return (string2 && string2->length()) ? -1 : 0;
if (!string2)
return string1->length() ? 1 : 0;
bool string1_is_8bit = string1->Is8Bit();
bool string2_is_8bit = string2->Is8Bit();
if (string1_is_8bit) {
if (string2_is_8bit) {
return CodeUnitCompare(string1->Span8(), string2->Span8());
}
return CodeUnitCompare(string1->Span8(), string2->Span16());
}
if (string2_is_8bit) {
return -CodeUnitCompare(string2->Span8(), string1->Span16());
}
return CodeUnitCompare(string1->Span16(), string2->Span16());
}
inline scoped_refptr<StringImpl> StringImpl::IsolatedCopy() const {
if (Is8Bit())
return Create(Span8());
return Create(Span16());
}
template <typename BufferType>
inline void StringImpl::AppendTo(BufferType& result,
wtf_size_t start,
wtf_size_t length) const {
wtf_size_t number_of_characters_to_copy = std::min(length, length_ - start);
if (!number_of_characters_to_copy)
return;
if (Is8Bit())
result.AppendSpan(Span8().subspan(start, number_of_characters_to_copy));
else
result.AppendSpan(Span16().subspan(start, number_of_characters_to_copy));
}
template <typename T>
struct HashTraits;
// Defined in string_hash.h.
template <>
struct HashTraits<StringImpl*>;
template <>
struct HashTraits<scoped_refptr<StringImpl>>;
} // namespace WTF
using WTF::Equal;
using WTF::EqualNonNull;
using WTF::kTextCaseASCIIInsensitive;
using WTF::kTextCaseSensitive;
using WTF::LengthOfNullTerminatedString;
using WTF::ReverseFind;
using WTF::StringImpl;
using WTF::TextCaseSensitivity;
#endif // THIRD_PARTY_BLINK_RENDERER_PLATFORM_WTF_TEXT_STRING_IMPL_H_
|