File: jni_wrappers.h

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (243 lines) | stat: -rw-r--r-- 8,151 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// IWYU pragma: private, include "third_party/jni_zero/jni_zero.h"

#ifndef JNI_ZERO_JNI_WRAPPERS_H_
#define JNI_ZERO_JNI_WRAPPERS_H_

#include <jni.h>

#include <iterator>
#include <string_view>

#include "third_party/jni_zero/java_refs.h"
#include "third_party/jni_zero/logging.h"

// Wrapper used to receive int when calling Java from native.
// The wrapper disallows automatic conversion of long to int.
// This is to avoid a common anti-pattern where a Java int is used
// to receive a native pointer. Please use a Java long to receive
// native pointers, so that the code works on both 32-bit and 64-bit
// platforms. Note the wrapper allows other lossy conversions into
// jint that could be consider anti-patterns, such as from size_t.

// Checking is only done in debugging builds.

#ifdef NDEBUG

typedef jint JniIntWrapper;

// This inline is sufficiently trivial that it does not change the
// final code generated by g++.
inline jint as_jint(JniIntWrapper wrapper) {
  return wrapper;
}

#else

class JniIntWrapper {
 public:
  JniIntWrapper() : i_(0) {}
  JniIntWrapper(int i) : i_(i) {}
  JniIntWrapper(const JniIntWrapper& ji) : i_(ji.i_) {}
  template <class T>
  JniIntWrapper(const T& t) : i_(t) {}
  jint as_jint() const { return i_; }

 private:
  // If you get an "is private" error at the line below it is because you used
  // an implicit conversion to convert a long to an int when calling Java.
  // We disallow this, as a common anti-pattern allows converting a native
  // pointer (intptr_t) to a Java int. Please use a Java long to represent
  // a native pointer. If you want a lossy conversion, please use an
  // explicit conversion in your C++ code. Note an error is only seen when
  // compiling on a 64-bit platform, as intptr_t is indistinguishable from
  // int on 32-bit platforms.
  JniIntWrapper(long);
  jint i_;
};

inline jint as_jint(const JniIntWrapper& wrapper) {
  return wrapper.as_jint();
}

#endif  // NDEBUG

namespace jni_zero {
// Wrapper for a jobjectArray which supports input iteration, allowing Java
// arrays to be iterated over with a range-based for loop, or used with
// <algorithm> functions that accept input iterators.
//
// The iterator returns each object in the array in turn, wrapped in a
// ScopedJavaLocalRef<T>. T will usually be jobject, but if you know that the
// array contains a more specific type (such as jstring) you can use that
// instead. This does not check the type at runtime!
//
// The wrapper holds a local reference to the array and only queries the size of
// the array once, so must only be used as a stack-based object from the current
// thread.
//
// Note that this does *not* update the contents of the array if you mutate the
// returned ScopedJavaLocalRef.
template <typename T>
class JavaObjectArrayReader {
 public:
  class iterator {
   public:
    // We can only be an input iterator, as all richer iterator types must
    // implement the multipass guarantee (always returning the same object for
    // the same iterator position), which is not practical when returning
    // temporary objects.
    using iterator_category = std::input_iterator_tag;

    using difference_type = ptrdiff_t;
    using value_type = ScopedJavaLocalRef<T>;

    // It doesn't make sense to return a reference type as the iterator creates
    // temporary wrapper objects when dereferenced. Fortunately, it's not
    // required that input iterators actually use references, and defining it
    // as value_type is valid.
    using reference = value_type;

    // This exists to make operator-> work as expected: its return value must
    // resolve to an actual pointer (otherwise the compiler just keeps calling
    // operator-> on the return value until it does), so we need an extra level
    // of indirection. This is sometimes called an "arrow proxy" or similar, and
    // this version is adapted from base/value_iterators.h.
    class pointer {
     public:
      explicit pointer(const reference& ref) : ref_(ref) {}
      pointer(const pointer& ptr) = default;
      pointer& operator=(const pointer& ptr) = delete;
      reference* operator->() { return &ref_; }

     private:
      reference ref_;
    };

    iterator(const iterator&) = default;
    ~iterator() = default;

    iterator& operator=(const iterator&) = default;

    bool operator==(const iterator& other) const {
      JNI_ZERO_DCHECK(reader_ == other.reader_);
      return i_ == other.i_;
    }

    bool operator!=(const iterator& other) const {
      JNI_ZERO_DCHECK(reader_ == other.reader_);
      return i_ != other.i_;
    }

    reference operator*() const {
      JNI_ZERO_DCHECK(i_ < reader_->size_);
      // JNIEnv functions return unowned local references; take ownership with
      // Adopt so that ~ScopedJavaLocalRef will release it automatically later.
      return value_type::Adopt(
          reader_->array_.env_,
          static_cast<T>(reader_->array_.env_->GetObjectArrayElement(
              reader_->array_.obj(), i_)));
    }

    pointer operator->() const { return pointer(operator*()); }

    iterator& operator++() {
      JNI_ZERO_DCHECK(i_ < reader_->size_);
      ++i_;
      return *this;
    }

    iterator operator++(int) {
      iterator old = *this;
      ++*this;
      return old;
    }

   private:
    iterator(const JavaObjectArrayReader* reader, jsize i)
        : reader_(reader), i_(i) {}
    const JavaObjectArrayReader<T>* reader_;
    jsize i_;

    friend JavaObjectArrayReader;
  };

  JavaObjectArrayReader(const JavaRef<jobjectArray>& array) : array_(array) {
    size_ = array_.env_->GetArrayLength(array_.obj());
  }

  // Copy constructor to allow returning it from JavaRef::ReadElements().
  JavaObjectArrayReader(const JavaObjectArrayReader& other) = default;

  // Assignment operator for consistency with copy constructor.
  JavaObjectArrayReader& operator=(const JavaObjectArrayReader& other) =
      default;

  // Allow move constructor and assignment since this owns a local ref.
  JavaObjectArrayReader(JavaObjectArrayReader&& other) = default;
  JavaObjectArrayReader& operator=(JavaObjectArrayReader&& other) = default;

  bool empty() const { return size_ == 0; }

  jsize size() const { return size_; }

  iterator begin() const { return iterator(this, 0); }

  iterator end() const { return iterator(this, size_); }

 private:
  ScopedJavaLocalRef<jobjectArray> array_;
  jsize size_;

  friend iterator;
};

// Use as: @JniType("jni_zero::ByteArrayView") byte[].
//
// This requests a direct pointer to the array data rather than a copy of it,
// so can be more efficient than std::vector<uint8_t> for large arrays.
//
// This helper needs to release the array via its destructor, and as a result
// has more binary size overhead than using std::vector<uint8_t>. As such, you
// should prefer std::vector for small arrays.
//
// Callers must ensure that the passed in array reference outlives this wrapper
// (always the case when used with @JniType).
class ByteArrayView {
 public:
  ByteArrayView(JNIEnv* env, jbyteArray array)
      : env_(env),
        array_(array),
        length_(env->GetArrayLength(array)),
        bytes_(env->GetByteArrayElements(array, nullptr)) {}

  ~ByteArrayView() {
    env_->ReleaseByteArrayElements(array_, bytes_, JNI_ABORT);
  }

  ByteArrayView(const ByteArrayView&) = delete;
  ByteArrayView(ByteArrayView&& other) = delete;
  ByteArrayView& operator=(const ByteArrayView&) = delete;

  size_t size() const { return static_cast<size_t>(length_); }
  bool empty() const { return length_ == 0; }
  const jbyte* bytes() const { return bytes_; }
  const uint8_t* data() const { return reinterpret_cast<uint8_t*>(bytes_); }
  const char* chars() const { return reinterpret_cast<char*>(bytes_); }
  std::string_view string_view() const {
    return std::string_view(chars(), size());
  }

 private:
  JNIEnv* env_;
  jbyteArray array_;
  jsize length_;
  jbyte* bytes_;
};

}  // namespace jni_zero

#endif  // JNI_ZERO_JNI_WRAPPERS_H_