File: vision.d.ts

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (2497 lines) | stat: -rw-r--r-- 107,424 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** Options to configure MediaPipe model loading and processing. */
declare interface BaseOptions_2 {
    /**
     * The model path to the model asset file. Only one of `modelAssetPath` or
     * `modelAssetBuffer` can be set.
     */
    modelAssetPath?: string | undefined;
    /**
     * A buffer containing the model aaset. Only one of `modelAssetPath` or
     * `modelAssetBuffer` can be set.
     */
    modelAssetBuffer?: Uint8Array | undefined;
    /** Overrides the default backend to use for the provided model. */
    delegate?: "CPU" | "GPU" | undefined;
}

/**
 * Copyright 2023 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** An integer bounding box, axis aligned. */
export declare interface BoundingBox {
    /** The X coordinate of the top-left corner, in pixels. */
    originX: number;
    /** The Y coordinate of the top-left corner, in pixels. */
    originY: number;
    /** The width of the bounding box, in pixels. */
    width: number;
    /** The height of the bounding box, in pixels. */
    height: number;
    /**
     * Angle of rotation of the original non-rotated box around the top left
     * corner of the original non-rotated box, in clockwise degrees from the
     * horizontal.
     */
    angle: number;
}

/**
 * A user-defined callback to take input data and map it to a custom output
 * value.
 */
export declare type Callback<I, O> = (input: I) => O;

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** A classification category. */
export declare interface Category {
    /** The probability score of this label category. */
    score: number;
    /** The index of the category in the corresponding label file. */
    index: number;
    /**
     * The label of this category object. Defaults to an empty string if there is
     * no category.
     */
    categoryName: string;
    /**
     * The display name of the label, which may be translated for different
     * locales. For example, a label, "apple", may be translated into Spanish for
     * display purpose, so that the `display_name` is "manzana". Defaults to an
     * empty string if there is no display name.
     */
    displayName: string;
}

/**
 * A category to color mapping that uses either a map or an array to assign
 * category indexes to RGBA colors.
 */
export declare type CategoryToColorMap = Map<number, RGBAColor> | RGBAColor[];

/** Classification results for a given classifier head. */
export declare interface Classifications {
    /**
     * The array of predicted categories, usually sorted by descending scores,
     * e.g., from high to low probability.
     */
    categories: Category[];
    /**
     * The index of the classifier head these categories refer to. This is
     * useful for multi-head models.
     */
    headIndex: number;
    /**
     * The name of the classifier head, which is the corresponding tensor
     * metadata name. Defaults to an empty string if there is no such metadata.
     */
    headName: string;
}

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** Options to configure a MediaPipe Classifier Task. */
declare interface ClassifierOptions {
    /**
     * The locale to use for display names specified through the TFLite Model
     * Metadata, if any. Defaults to English.
     */
    displayNamesLocale?: string | undefined;
    /** The maximum number of top-scored detection results to return. */
    maxResults?: number | undefined;
    /**
     * Overrides the value provided in the model metadata. Results below this
     * value are rejected.
     */
    scoreThreshold?: number | undefined;
    /**
     * Allowlist of category names. If non-empty, detection results whose category
     * name is not in this set will be filtered out. Duplicate or unknown category
     * names are ignored. Mutually exclusive with `categoryDenylist`.
     */
    categoryAllowlist?: string[] | undefined;
    /**
     * Denylist of category names. If non-empty, detection results whose category
     * name is in this set will be filtered out. Duplicate or unknown category
     * names are ignored. Mutually exclusive with `categoryAllowlist`.
     */
    categoryDenylist?: string[] | undefined;
}

/** A connection between two landmarks. */
declare interface Connection {
    start: number;
    end: number;
}

/** A color map with 22 classes. Used in our demos. */
export declare const DEFAULT_CATEGORY_TO_COLOR_MAP: number[][];

/** Represents one detection by a detection task. */
export declare interface Detection {
    /** A list of `Category` objects. */
    categories: Category[];
    /** The bounding box of the detected objects. */
    boundingBox?: BoundingBox;
    /**
     * List of keypoints associated with the detection. Keypoints represent
     * interesting points related to the detection. For example, the keypoints
     * represent the eye, ear and mouth from face detection model. Or in the
     * template matching detection, e.g. KNIFT, they can represent the feature
     * points for template matching. Contains an empty list if no keypoints are
     * detected.
     */
    keypoints: NormalizedKeypoint[];
}

/** Detection results of a model. */
declare interface DetectionResult {
    /** A list of Detections. */
    detections: Detection[];
}
export { DetectionResult as FaceDetectorResult }
export { DetectionResult as ObjectDetectorResult }

/**
 * Options for customizing the drawing routines
 */
export declare interface DrawingOptions {
    /** The color that is used to draw the shape. Defaults to white. */
    color?: string | CanvasGradient | CanvasPattern | Callback<LandmarkData, string | CanvasGradient | CanvasPattern>;
    /**
     * The color that is used to fill the shape. Defaults to `.color` (or black
     * if color is not set).
     */
    fillColor?: string | CanvasGradient | CanvasPattern | Callback<LandmarkData, string | CanvasGradient | CanvasPattern>;
    /** The width of the line boundary of the shape. Defaults to 4. */
    lineWidth?: number | Callback<LandmarkData, number>;
    /** The radius of location marker. Defaults to 6. */
    radius?: number | Callback<LandmarkData, number>;
}

/** Helper class to visualize the result of a MediaPipe Vision task. */
export declare class DrawingUtils {
    /**
     * Creates a new DrawingUtils class.
     *
     * @param gpuContext The WebGL canvas rendering context to render into. If
     *     your Task is using a GPU delegate, the context must be obtained from
     * its canvas (provided via `setOptions({ canvas: .. })`).
     */
    constructor(gpuContext: WebGL2RenderingContext);
    /**
     * Creates a new DrawingUtils class.
     *
     * @param cpuContext The 2D canvas rendering context to render into. If
     *     you are rendering GPU data you must also provide `gpuContext` to allow
     *     for data conversion.
     * @param gpuContext A WebGL canvas that is used for GPU rendering and for
     *     converting GPU to CPU data. If your Task is using a GPU delegate, the
     *     context must be obtained from  its canvas (provided via
     *     `setOptions({ canvas: .. })`).
     */
    constructor(cpuContext: CanvasRenderingContext2D | OffscreenCanvasRenderingContext2D, gpuContext?: WebGL2RenderingContext);
    /**
     * Restricts a number between two endpoints (order doesn't matter).
     *
     * @export
     * @param x The number to clamp.
     * @param x0 The first boundary.
     * @param x1 The second boundary.
     * @return The clamped value.
     */
    static clamp(x: number, x0: number, x1: number): number;
    /**
     * Linearly interpolates a value between two points, clamping that value to
     * the endpoints.
     *
     * @export
     * @param x The number to interpolate.
     * @param x0 The x coordinate of the start value.
     * @param x1 The x coordinate of the end value.
     * @param y0 The y coordinate of the start value.
     * @param y1 The y coordinate of the end value.
     * @return The interpolated value.
     */
    static lerp(x: number, x0: number, x1: number, y0: number, y1: number): number;
    /**
     * Draws circles onto the provided landmarks.
     *
     * This method can only be used when `DrawingUtils` is initialized with a
     * `CanvasRenderingContext2D`.
     *
     * @export
     * @param landmarks The landmarks to draw.
     * @param style The style to visualize the landmarks.
     */
    drawLandmarks(landmarks?: NormalizedLandmark[], style?: DrawingOptions): void;
    /**
     * Draws lines between landmarks (given a connection graph).
     *
     * This method can only be used when `DrawingUtils` is initialized with a
     * `CanvasRenderingContext2D`.
     *
     * @export
     * @param landmarks The landmarks to draw.
     * @param connections The connections array that contains the start and the
     *     end indices for the connections to draw.
     * @param style The style to visualize the landmarks.
     */
    drawConnectors(landmarks?: NormalizedLandmark[], connections?: Connection[], style?: DrawingOptions): void;
    /**
     * Draws a bounding box.
     *
     * This method can only be used when `DrawingUtils` is initialized with a
     * `CanvasRenderingContext2D`.
     *
     * @export
     * @param boundingBox The bounding box to draw.
     * @param style The style to visualize the boundin box.
     */
    drawBoundingBox(boundingBox: BoundingBox, style?: DrawingOptions): void;
    /**
     * Draws a category mask using the provided category-to-color mapping.
     *
     * @export
     * @param mask A category mask that was returned from a segmentation task.
     * @param categoryToColorMap A map that maps category indices to RGBA
     *     values. You must specify a map entry for each category.
     * @param background A color or image to use as the background. Defaults to
     *     black.
     */
    drawCategoryMask(mask: MPMask, categoryToColorMap: Map<number, RGBAColor>, background?: RGBAColor | ImageSource): void;
    /**
     * Draws a category mask using the provided color array.
     *
     * @export
     * @param mask A category mask that was returned from a segmentation task.
     * @param categoryToColorMap An array that maps indices to RGBA values. The
     *     array's indices must correspond to the category indices of the model
     *     and an entry must be provided for each category.
     * @param background A color or image to use as the background. Defaults to
     *     black.
     */
    drawCategoryMask(mask: MPMask, categoryToColorMap: RGBAColor[], background?: RGBAColor | ImageSource): void;
    /**
     * Blends two images using the provided confidence mask.
     *
     * If you are using an `ImageData` or `HTMLImageElement` as your data source
     * and drawing the result onto a `WebGL2RenderingContext`, this method uploads
     * the image data to the GPU. For still image input that gets re-used every
     * frame, you can reduce the cost of re-uploading these images by passing a
     * `HTMLCanvasElement` instead.
     *
     * @export
     * @param mask A confidence mask that was returned from a segmentation task.
     * @param defaultTexture An image or a four-channel color that will be used
     *     when confidence values are low.
     * @param overlayTexture An image or four-channel color that will be used when
     *     confidence values are high.
     */
    drawConfidenceMask(mask: MPMask, defaultTexture: RGBAColor | ImageSource, overlayTexture: RGBAColor | ImageSource): void;
    /**
     * Frees all WebGL resources held by this class.
     * @export
     */
    close(): void;
}

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** Options to configure a MediaPipe Embedder Task */
declare interface EmbedderOptions {
    /**
     * Whether to normalize the returned feature vector with L2 norm. Use this
     * option only if the model does not already contain a native L2_NORMALIZATION
     * TF Lite Op. In most cases, this is already the case and L2 norm is thus
     * achieved through TF Lite inference.
     */
    l2Normalize?: boolean | undefined;
    /**
     * Whether the returned embedding should be quantized to bytes via scalar
     * quantization. Embeddings are implicitly assumed to be unit-norm and
     * therefore any dimension is guaranteed to have a value in [-1.0, 1.0]. Use
     * the l2_normalize option if this is not the case.
     */
    quantize?: boolean | undefined;
}

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * List of embeddings with an optional timestamp.
 *
 * One and only one of the two 'floatEmbedding' and 'quantizedEmbedding' will
 * contain data, based on whether or not the embedder was configured to perform
 * scalar quantization.
 */
export declare interface Embedding {
    /**
     *  Floating-point embedding. Empty if the embedder was configured to perform
     * scalar-quantization.
     */
    floatEmbedding?: number[];
    /**
     * Scalar-quantized embedding. Empty if the embedder was not configured to
     * perform scalar quantization.
     */
    quantizedEmbedding?: Uint8Array;
    /**
     * The index of the classifier head these categories refer to. This is
     * useful for multi-head models.
     */
    headIndex: number;
    /**
     * The name of the classifier head, which is the corresponding tensor
     * metadata name.
     */
    headName: string;
}

/** Performs face detection on images. */
export declare class FaceDetector extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new face detector from the
     * provided options.
     *
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param faceDetectorOptions The options for the FaceDetector. Note that
     *     either a path to the model asset or a model buffer needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, faceDetectorOptions: FaceDetectorOptions): Promise<FaceDetector>;
    /**
     * Initializes the Wasm runtime and creates a new face detector based on the
     * provided model asset buffer.
     *
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<FaceDetector>;
    /**
     * Initializes the Wasm runtime and creates a new face detector based on the
     * path to the model asset.
     *
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<FaceDetector>;
    private constructor();
    /**
     * Sets new options for the FaceDetector.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the FaceDetector.
     */
    setOptions(options: FaceDetectorOptions): Promise<void>;
    /**
     * Performs face detection on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * FaceDetector is created with running mode `image`.
     *
     * @export
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return A result containing the list of detected faces.
     */
    detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): DetectionResult;
    /**
     * Performs face detection on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * FaceDetector is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return A result containing the list of detected faces.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): DetectionResult;
}

/** Options to configure the MediaPipe Face Detector Task */
export declare interface FaceDetectorOptions extends VisionTaskOptions {
    /**
     * The minimum confidence score for the face detection to be considered
     * successful. Defaults to 0.5.
     */
    minDetectionConfidence?: number | undefined;
    /**
     * The minimum non-maximum-suppression threshold for face detection to be
     * considered overlapped. Defaults to 0.3.
     */
    minSuppressionThreshold?: number | undefined;
}

/**
 * Performs face landmarks detection on images.
 *
 * This API expects a pre-trained face landmarker model asset bundle.
 */
export declare class FaceLandmarker extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new `FaceLandmarker` from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param faceLandmarkerOptions The options for the FaceLandmarker.
     *     Note that either a path to the model asset or a model buffer needs to
     *     be provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, faceLandmarkerOptions: FaceLandmarkerOptions): Promise<FaceLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `FaceLandmarker` based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<FaceLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `FaceLandmarker` based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<FaceLandmarker>;
    /**
     * Landmark connections to draw the connection between a face's lips.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_LIPS: Connection[];
    /**
     * Landmark connections to draw the connection between a face's left eye.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_LEFT_EYE: Connection[];
    /**
     * Landmark connections to draw the connection between a face's left eyebrow.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_LEFT_EYEBROW: Connection[];
    /**
     * Landmark connections to draw the connection between a face's left iris.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_LEFT_IRIS: Connection[];
    /**
     * Landmark connections to draw the connection between a face's right eye.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_RIGHT_EYE: Connection[];
    /**
     * Landmark connections to draw the connection between a face's right
     * eyebrow.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_RIGHT_EYEBROW: Connection[];
    /**
     * Landmark connections to draw the connection between a face's right iris.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_RIGHT_IRIS: Connection[];
    /**
     * Landmark connections to draw the face's oval.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_FACE_OVAL: Connection[];
    /**
     * Landmark connections to draw the face's contour.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_CONTOURS: Connection[];
    /**
     * Landmark connections to draw the face's tesselation.
     * @export
     * @nocollapse
     */
    static FACE_LANDMARKS_TESSELATION: Connection[];
    private constructor();
    /**
     * Sets new options for this `FaceLandmarker`.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the face landmarker.
     */
    setOptions(options: FaceLandmarkerOptions): Promise<void>;
    /**
     * Performs face landmarks detection on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * FaceLandmarker is created with running mode `image`.
     *
     * @export
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected face landmarks.
     */
    detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): FaceLandmarkerResult;
    /**
     * Performs face landmarks detection on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * FaceLandmarker is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected face landmarks.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): FaceLandmarkerResult;
}

/** Options to configure the MediaPipe FaceLandmarker Task */
export declare interface FaceLandmarkerOptions extends VisionTaskOptions {
    /**
     * The maximum number of faces can be detected by the FaceLandmarker.
     * Defaults to 1.
     */
    numFaces?: number | undefined;
    /**
     * The minimum confidence score for the face detection to be considered
     * successful. Defaults to 0.5.
     */
    minFaceDetectionConfidence?: number | undefined;
    /**
     * The minimum confidence score of face presence score in the face landmark
     * detection. Defaults to 0.5.
     */
    minFacePresenceConfidence?: number | undefined;
    /**
     * The minimum confidence score for the face tracking to be considered
     * successful. Defaults to 0.5.
     */
    minTrackingConfidence?: number | undefined;
    /**
     * Whether FaceLandmarker outputs face blendshapes classification. Face
     * blendshapes are used for rendering the 3D face model.
     */
    outputFaceBlendshapes?: boolean | undefined;
    /**
     * Whether FaceLandmarker outputs facial transformation_matrix. Facial
     * transformation matrix is used to transform the face landmarks in canonical
     * face to the detected face, so that users can apply face effects on the
     * detected landmarks.
     */
    outputFacialTransformationMatrixes?: boolean | undefined;
}

/**
 * Represents the face landmarks deection results generated by `FaceLandmarker`.
 */
export declare interface FaceLandmarkerResult {
    /** Detected face landmarks in normalized image coordinates. */
    faceLandmarks: NormalizedLandmark[][];
    /** Optional face blendshapes results. */
    faceBlendshapes: Classifications[];
    /** Optional facial transformation matrix. */
    facialTransformationMatrixes: Matrix[];
}

/** Performs face stylization on images. */
export declare class FaceStylizer extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new Face Stylizer from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param faceStylizerOptions The options for the Face Stylizer. Note
     *     that either a path to the model asset or a model buffer needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, faceStylizerOptions: FaceStylizerOptions): Promise<FaceStylizer>;
    /**
     * Initializes the Wasm runtime and creates a new Face Stylizer based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<FaceStylizer>;
    /**
     * Initializes the Wasm runtime and creates a new Face Stylizer based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<FaceStylizer>;
    private constructor();
    /**
     * Sets new options for the Face Stylizer.
     *
     * Calling `setOptions()` with a subset of options only affects those
     * options. You can reset an option back to its default value by
     * explicitly setting it to `undefined`.
     *
     * @export
     * @param options The options for the Face Stylizer.
     */
    setOptions(options: FaceStylizerOptions): Promise<void>;
    /**
     * Performs face stylization on the provided single image and invokes the
     * callback with result. The method returns synchronously once the callback
     * returns. Only use this method when the FaceStylizer is created with the
     * image running mode.
     *
     * @param image An image to process.
     * @param callback The callback that is invoked with the stylized image or
     *    `null` if no face was detected. The lifetime of the returned data is
     *     only guaranteed for the duration of the callback.
     */
    stylize(image: ImageSource, callback: FaceStylizerCallback): void;
    /**
     * Performs face stylization on the provided single image and invokes the
     * callback with result. The method returns synchronously once the callback
     * returns. Only use this method when the FaceStylizer is created with the
     * image running mode.
     *
     * The 'imageProcessingOptions' parameter can be used to specify one or all
     * of:
     *  - the rotation to apply to the image before performing stylization, by
     *    setting its 'rotationDegrees' property.
     *  - the region-of-interest on which to perform stylization, by setting its
     *   'regionOfInterest' property. If not specified, the full image is used.
     *  If both are specified, the crop around the region-of-interest is extracted
     *  first, then the specified rotation is applied to the crop.
     *
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @param callback The callback that is invoked with the stylized image or
     *    `null` if no face was detected. The lifetime of the returned data is
     *    only guaranteed for the duration of the callback.
     */
    stylize(image: ImageSource, imageProcessingOptions: ImageProcessingOptions, callback: FaceStylizerCallback): void;
    /**
     * Performs face stylization on the provided single image and returns the
     * result. This method creates a copy of the resulting image and should not be
     * used in high-throughput applications. Only use this method when the
     * FaceStylizer is created with the image running mode.
     *
     * @param image An image to process.
     * @return A stylized face or `null` if no face was detected. The result is
     *     copied to avoid lifetime issues.
     */
    stylize(image: ImageSource): MPImage | null;
    /**
     * Performs face stylization on the provided single image and returns the
     * result. This method creates a copy of the resulting image and should not be
     * used in high-throughput applications. Only use this method when the
     * FaceStylizer is created with the image running mode.
     *
     * The 'imageProcessingOptions' parameter can be used to specify one or all
     * of:
     *  - the rotation to apply to the image before performing stylization, by
     *    setting its 'rotationDegrees' property.
     *  - the region-of-interest on which to perform stylization, by setting its
     *   'regionOfInterest' property. If not specified, the full image is used.
     *  If both are specified, the crop around the region-of-interest is extracted
     *  first, then the specified rotation is applied to the crop.
     *
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return A stylized face or `null` if no face was detected. The result is
     *     copied to avoid lifetime issues.
     */
    stylize(image: ImageSource, imageProcessingOptions: ImageProcessingOptions): MPImage | null;
}

/**
 * A callback that receives an `MPImage` object from the face stylizer, or
 * `null` if no face was detected. The lifetime of the underlying data is
 * limited to the duration of the callback. If asynchronous processing is
 * needed, all data needs to be copied before the callback returns (via
 * `image.clone()`).
 */
export declare type FaceStylizerCallback = (image: MPImage | null) => void;

/** Options to configure the MediaPipe Face Stylizer Task */
export declare interface FaceStylizerOptions extends VisionTaskOptions {
}

/**
 * Resolves the files required for the MediaPipe Task APIs.
 *
 * This class verifies whether SIMD is supported in the current environment and
 * loads the SIMD files only if support is detected. The returned filesets
 * require that the Wasm files are published without renaming. If this is not
 * possible, you can invoke the MediaPipe Tasks APIs using a manually created
 * `WasmFileset`.
 */
export declare class FilesetResolver {
    /**
     * Returns whether SIMD is supported in the current environment.
     *
     * If your environment requires custom locations for the MediaPipe Wasm files,
     * you can use `isSimdSupported()` to decide whether to load the SIMD-based
     * assets.
     *
     * @export
     * @return Whether SIMD support was detected in the current environment.
     */
    static isSimdSupported(): Promise<boolean>;
    /**
     * Creates a fileset for the MediaPipe Audio tasks.
     *
     * @export
     * @param basePath An optional base path to specify the directory the Wasm
     *    files should be loaded from. If not specified, the Wasm files are
     *    loaded from the host's root directory.
     * @return A `WasmFileset` that can be used to initialize MediaPipe Audio
     *    tasks.
     */
    static forAudioTasks(basePath?: string): Promise<WasmFileset>;
    /**
     * Creates a fileset for the MediaPipe Text tasks.
     *
     * @export
     * @param basePath An optional base path to specify the directory the Wasm
     *    files should be loaded from. If not specified, the Wasm files are
     *    loaded from the host's root directory.
     * @return A `WasmFileset` that can be used to initialize MediaPipe Text
     *    tasks.
     */
    static forTextTasks(basePath?: string): Promise<WasmFileset>;
    /**
     * Creates a fileset for the MediaPipe Vision tasks.
     *
     * @export
     * @param basePath An optional base path to specify the directory the Wasm
     *    files should be loaded from. If not specified, the Wasm files are
     *    loaded from the host's root directory.
     * @return A `WasmFileset` that can be used to initialize MediaPipe Vision
     *    tasks.
     */
    static forVisionTasks(basePath?: string): Promise<WasmFileset>;
}

/** Performs hand gesture recognition on images. */
export declare class GestureRecognizer extends VisionTaskRunner {
    /**
     * An array containing the pairs of hand landmark indices to be rendered with
     * connections.
     * @export
     * @nocollapse
     */
    static HAND_CONNECTIONS: Connection[];
    /**
     * Initializes the Wasm runtime and creates a new gesture recognizer from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param gestureRecognizerOptions The options for the gesture recognizer.
     *     Note that either a path to the model asset or a model buffer needs to
     *     be provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, gestureRecognizerOptions: GestureRecognizerOptions): Promise<GestureRecognizer>;
    /**
     * Initializes the Wasm runtime and creates a new gesture recognizer based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<GestureRecognizer>;
    /**
     * Initializes the Wasm runtime and creates a new gesture recognizer based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<GestureRecognizer>;
    private constructor();
    /**
     * Sets new options for the gesture recognizer.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the gesture recognizer.
     */
    setOptions(options: GestureRecognizerOptions): Promise<void>;
    /**
     * Performs gesture recognition on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * GestureRecognizer is created with running mode `image`.
     *
     * @export
     * @param image A single image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected gestures.
     */
    recognize(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): GestureRecognizerResult;
    /**
     * Performs gesture recognition on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * GestureRecognizer is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected gestures.
     */
    recognizeForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): GestureRecognizerResult;
}

/** Options to configure the MediaPipe Gesture Recognizer Task */
export declare interface GestureRecognizerOptions extends VisionTaskOptions {
    /**
     * The maximum number of hands can be detected by the GestureRecognizer.
     * Defaults to 1.
     */
    numHands?: number | undefined;
    /**
     * The minimum confidence score for the hand detection to be considered
     * successful. Defaults to 0.5.
     */
    minHandDetectionConfidence?: number | undefined;
    /**
     * The minimum confidence score of hand presence score in the hand landmark
     * detection. Defaults to 0.5.
     */
    minHandPresenceConfidence?: number | undefined;
    /**
     * The minimum confidence score for the hand tracking to be considered
     * successful. Defaults to 0.5.
     */
    minTrackingConfidence?: number | undefined;
    /**
     * Sets the optional `ClassifierOptions` controlling the canned gestures
     * classifier, such as score threshold, allow list and deny list of gestures.
     * The categories for canned gesture
     * classifiers are: ["None", "Closed_Fist", "Open_Palm", "Pointing_Up",
     * "Thumb_Down", "Thumb_Up", "Victory", "ILoveYou"]
     */
    cannedGesturesClassifierOptions?: ClassifierOptions | undefined;
    /**
     * Options for configuring the custom gestures classifier, such as score
     * threshold, allow list and deny list of gestures.
     */
    customGesturesClassifierOptions?: ClassifierOptions | undefined;
}

/**
 * Represents the gesture recognition results generated by `GestureRecognizer`.
 */
export declare interface GestureRecognizerResult {
    /** Hand landmarks of detected hands. */
    landmarks: NormalizedLandmark[][];
    /** Hand landmarks in world coordinates of detected hands. */
    worldLandmarks: Landmark[][];
    /** Handedness of detected hands. */
    handedness: Category[][];
    /**
     * Handedness of detected hands.
     * @deprecated Use `.handedness` instead.
     */
    handednesses: Category[][];
    /**
     * Recognized hand gestures of detected hands. Note that the index of the
     * gesture is always -1, because the raw indices from multiple gesture
     * classifiers cannot consolidate to a meaningful index.
     */
    gestures: Category[][];
}

/** Performs hand landmarks detection on images. */
export declare class HandLandmarker extends VisionTaskRunner {
    /**
     * An array containing the pairs of hand landmark indices to be rendered with
     * connections.
     * @export
     * @nocollapse
     */
    static HAND_CONNECTIONS: Connection[];
    /**
     * Initializes the Wasm runtime and creates a new `HandLandmarker` from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param handLandmarkerOptions The options for the HandLandmarker.
     *     Note that either a path to the model asset or a model buffer needs to
     *     be provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, handLandmarkerOptions: HandLandmarkerOptions): Promise<HandLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `HandLandmarker` based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<HandLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `HandLandmarker` based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<HandLandmarker>;
    private constructor();
    /**
     * Sets new options for this `HandLandmarker`.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the hand landmarker.
     */
    setOptions(options: HandLandmarkerOptions): Promise<void>;
    /**
     * Performs hand landmarks detection on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * HandLandmarker is created with running mode `image`.
     *
     * @export
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected hand landmarks.
     */
    detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): HandLandmarkerResult;
    /**
     * Performs hand landmarks detection on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * HandLandmarker is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The detected hand landmarks.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): HandLandmarkerResult;
}

/** Options to configure the MediaPipe HandLandmarker Task */
export declare interface HandLandmarkerOptions extends VisionTaskOptions {
    /**
     * The maximum number of hands can be detected by the HandLandmarker.
     * Defaults to 1.
     */
    numHands?: number | undefined;
    /**
     * The minimum confidence score for the hand detection to be considered
     * successful. Defaults to 0.5.
     */
    minHandDetectionConfidence?: number | undefined;
    /**
     * The minimum confidence score of hand presence score in the hand landmark
     * detection. Defaults to 0.5.
     */
    minHandPresenceConfidence?: number | undefined;
    /**
     * The minimum confidence score for the hand tracking to be considered
     * successful. Defaults to 0.5.
     */
    minTrackingConfidence?: number | undefined;
}

/**
 * Represents the hand landmarks deection results generated by `HandLandmarker`.
 */
export declare interface HandLandmarkerResult {
    /** Hand landmarks of detected hands. */
    landmarks: NormalizedLandmark[][];
    /** Hand landmarks in world coordinates of detected hands. */
    worldLandmarks: Landmark[][];
    /**
     * Handedness of detected hands.
     * @deprecated Use `.handedness` instead.
     */
    handednesses: Category[][];
    /** Handedness of detected hands. */
    handedness: Category[][];
}

/** Performs classification on images. */
export declare class ImageClassifier extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new image classifier from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location
     *     Wasm binary and its loader.
     * @param imageClassifierOptions The options for the image classifier. Note
     *     that either a path to the model asset or a model buffer needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, imageClassifierOptions: ImageClassifierOptions): Promise<ImageClassifier>;
    /**
     * Initializes the Wasm runtime and creates a new image classifier based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<ImageClassifier>;
    /**
     * Initializes the Wasm runtime and creates a new image classifier based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<ImageClassifier>;
    private constructor();
    /**
     * Sets new options for the image classifier.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the image classifier.
     */
    setOptions(options: ImageClassifierOptions): Promise<void>;
    /**
     * Performs image classification on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * ImageClassifier is created with running mode `image`.
     *
     * @export
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The classification result of the image
     */
    classify(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): ImageClassifierResult;
    /**
     * Performs image classification on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * ImageClassifier is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The classification result of the image
     */
    classifyForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): ImageClassifierResult;
}

/** Options to configure the MediaPipe Image Classifier Task. */
export declare interface ImageClassifierOptions extends ClassifierOptions, VisionTaskOptions {
}

/** Classification results of a model. */
export declare interface ImageClassifierResult {
    /** The classification results for each head of the model. */
    classifications: Classifications[];
    /**
     * The optional timestamp (in milliseconds) of the start of the chunk of data
     * corresponding to these results.
     *
     * This is only used for classification on time series (e.g. audio
     * classification). In these use cases, the amount of data to process might
     * exceed the maximum size that the model can process: to solve this, the
     * input data is split into multiple chunks starting at different timestamps.
     */
    timestampMs?: number;
}

/** Performs embedding extraction on images. */
export declare class ImageEmbedder extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new image embedder from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param imageEmbedderOptions The options for the image embedder. Note that
     *     either a path to the TFLite model or the model itself needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, imageEmbedderOptions: ImageEmbedderOptions): Promise<ImageEmbedder>;
    /**
     * Initializes the Wasm runtime and creates a new image embedder based on the
     * provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the TFLite model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<ImageEmbedder>;
    /**
     * Initializes the Wasm runtime and creates a new image embedder based on the
     * path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the TFLite model.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<ImageEmbedder>;
    private constructor();
    /**
     * Sets new options for the image embedder.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the image embedder.
     */
    setOptions(options: ImageEmbedderOptions): Promise<void>;
    /**
     * Performs embedding extraction on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * ImageEmbedder is created with running mode `image`.
     *
     * @export
     * @param image The image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The classification result of the image
     */
    embed(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): ImageEmbedderResult;
    /**
     * Performs embedding extraction on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * ImageEmbedder is created with running mode `video`.
     *
     * @export
     * @param imageFrame The image frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The classification result of the image
     */
    embedForVideo(imageFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): ImageEmbedderResult;
    /**
     * Utility function to compute cosine similarity[1] between two `Embedding`
     * objects.
     *
     * [1]: https://en.wikipedia.org/wiki/Cosine_similarity
     *
     * @export
     * @throws if the embeddings are of different types(float vs. quantized), have
     *     different sizes, or have an L2-norm of 0.
     */
    static cosineSimilarity(u: Embedding, v: Embedding): number;
}

/** Options for configuring a MediaPipe Image Embedder task. */
export declare interface ImageEmbedderOptions extends EmbedderOptions, VisionTaskOptions {
}

/**  Embedding results for a given embedder model. */
export declare interface ImageEmbedderResult {
    /**
     * The embedding results for each model head, i.e. one for each output tensor.
     */
    embeddings: Embedding[];
    /**
     * The optional timestamp (in milliseconds) of the start of the chunk of
     * data corresponding to these results.
     *
     * This is only used for embedding extraction on time series (e.g. audio
     * embedding). In these use cases, the amount of data to process might
     * exceed the maximum size that the model can process: to solve this, the
     * input data is split into multiple chunks starting at different timestamps.
     */
    timestampMs?: number;
}

/**
 * Options for image processing.
 *
 * If both region-or-interest and rotation are specified, the crop around the
 * region-of-interest is extracted first, then the specified rotation is applied
 * to the crop.
 */
declare interface ImageProcessingOptions {
    /**
     * The optional region-of-interest to crop from the image. If not specified,
     * the full image is used.
     *
     * Coordinates must be in [0,1] with 'left' < 'right' and 'top' < bottom.
     */
    regionOfInterest?: RectF;
    /**
     * The rotation to apply to the image (or cropped region-of-interest), in
     * degrees clockwise.
     *
     * The rotation must be a multiple (positive or negative) of 90°.
     */
    rotationDegrees?: number;
}

/** Performs image segmentation on images. */
export declare class ImageSegmenter extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new image segmenter from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param imageSegmenterOptions The options for the Image Segmenter. Note
     *     that either a path to the model asset or a model buffer needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, imageSegmenterOptions: ImageSegmenterOptions): Promise<ImageSegmenter>;
    /**
     * Initializes the Wasm runtime and creates a new image segmenter based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<ImageSegmenter>;
    /**
     * Initializes the Wasm runtime and creates a new image segmenter based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<ImageSegmenter>;
    private constructor();
    /**
     * Sets new options for the image segmenter.
     *
     * Calling `setOptions()` with a subset of options only affects those
     * options. You can reset an option back to its default value by
     * explicitly setting it to `undefined`.
     *
     * @export
     * @param options The options for the image segmenter.
     */
    setOptions(options: ImageSegmenterOptions): Promise<void>;
    /**
     * Performs image segmentation on the provided single image and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the ImageSegmenter is
     * created with running mode `image`.
     *
     * @param image An image to process.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segment(image: ImageSource, callback: ImageSegmenterCallback): void;
    /**
     * Performs image segmentation on the provided single image and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the ImageSegmenter is
     * created with running mode `image`.
     *
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segment(image: ImageSource, imageProcessingOptions: ImageProcessingOptions, callback: ImageSegmenterCallback): void;
    /**
     * Performs image segmentation on the provided single image and returns the
     * segmentation result. This method creates a copy of the resulting masks and
     * should not be used in high-throughput applications. Only use this method
     * when the ImageSegmenter is created with running mode `image`.
     *
     * @param image An image to process.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     issues.
     */
    segment(image: ImageSource): ImageSegmenterResult;
    /**
     * Performs image segmentation on the provided single image and returns the
     * segmentation result. This method creates a copy of the resulting masks and
     * should not be used in high-v applications. Only use this method when
     * the ImageSegmenter is created with running mode `image`.
     *
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     issues.
     */
    segment(image: ImageSource, imageProcessingOptions: ImageProcessingOptions): ImageSegmenterResult;
    /**
     * Performs image segmentation on the provided video frame and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the ImageSegmenter is
     * created with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segmentForVideo(videoFrame: ImageSource, timestamp: number, callback: ImageSegmenterCallback): void;
    /**
     * Performs image segmentation on the provided video frame and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the ImageSegmenter is
     * created with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input frame before running inference.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segmentForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions: ImageProcessingOptions, callback: ImageSegmenterCallback): void;
    /**
     * Performs image segmentation on the provided video frame and returns the
     * segmentation result. This method creates a copy of the resulting masks and
     * should not be used in high-throughput applications. Only use this method
     * when the ImageSegmenter is created with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     issues.
     */
    segmentForVideo(videoFrame: ImageSource, timestamp: number): ImageSegmenterResult;
    /**
     * Performs image segmentation on the provided video frame and returns the
     * segmentation result. This method creates a copy of the resulting masks and
     * should not be used in high-v applications. Only use this method when
     * the ImageSegmenter is created with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input frame before running inference.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     issues.
     */
    segmentForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions: ImageProcessingOptions): ImageSegmenterResult;
    /**
     * Get the category label list of the ImageSegmenter can recognize. For
     * `CATEGORY_MASK` type, the index in the category mask corresponds to the
     * category in the label list. For `CONFIDENCE_MASK` type, the output mask
     * list at index corresponds to the category in the label list.
     *
     * If there is no labelmap provided in the model file, empty label array is
     * returned.
     *
     * @export
     * @return The labels used by the current model.
     */
    getLabels(): string[];
}

/**
 * A callback that receives the computed masks from the image segmenter. The
 * returned data is only valid for the duration of the callback. If
 * asynchronous processing is needed, all data needs to be copied before the
 * callback returns.
 */
export declare type ImageSegmenterCallback = (result: ImageSegmenterResult) => void;

/** Options to configure the MediaPipe Image Segmenter Task */
export declare interface ImageSegmenterOptions extends VisionTaskOptions {
    /**
     * The locale to use for display names specified through the TFLite Model
     * Metadata, if any. Defaults to English.
     */
    displayNamesLocale?: string | undefined;
    /** Whether to output confidence masks. Defaults to true. */
    outputConfidenceMasks?: boolean | undefined;
    /** Whether to output the category masks. Defaults to false. */
    outputCategoryMask?: boolean | undefined;
}

/** The output result of ImageSegmenter. */
export declare class ImageSegmenterResult {
    /**
     * Multiple masks represented as `Float32Array` or `WebGLTexture`-backed
     * `MPImage`s where, for each mask, each pixel represents the prediction
     * confidence, usually in the [0, 1] range.
     * @export
     */
    readonly confidenceMasks?: MPMask[] | undefined;
    /**
     * A category mask represented as a `Uint8ClampedArray` or
     * `WebGLTexture`-backed `MPImage` where each pixel represents the class
     * which the pixel in the original image was predicted to belong to.
     * @export
     */
    readonly categoryMask?: MPMask | undefined;
    /**
     * The quality scores of the result masks, in the range of [0, 1].
     * Defaults to `1` if the model doesn't output quality scores. Each
     * element corresponds to the score of the category in the model outputs.
     * @export
     */
    readonly qualityScores?: number[] | undefined;
    constructor(
    /**
     * Multiple masks represented as `Float32Array` or `WebGLTexture`-backed
     * `MPImage`s where, for each mask, each pixel represents the prediction
     * confidence, usually in the [0, 1] range.
     * @export
     */
    confidenceMasks?: MPMask[] | undefined, 
    /**
     * A category mask represented as a `Uint8ClampedArray` or
     * `WebGLTexture`-backed `MPImage` where each pixel represents the class
     * which the pixel in the original image was predicted to belong to.
     * @export
     */
    categoryMask?: MPMask | undefined, 
    /**
     * The quality scores of the result masks, in the range of [0, 1].
     * Defaults to `1` if the model doesn't output quality scores. Each
     * element corresponds to the score of the category in the model outputs.
     * @export
     */
    qualityScores?: number[] | undefined);
    /**
     * Frees the resources held by the category and confidence masks.
     * @export
     */
    close(): void;
}

/**
 * Valid types of image sources which we can run our GraphRunner over.
 */
export declare type ImageSource = HTMLCanvasElement | HTMLVideoElement | HTMLImageElement | ImageData | ImageBitmap;

/**
 * Performs interactive segmentation on images.
 *
 * Users can represent user interaction through `RegionOfInterest`, which gives
 * a hint to InteractiveSegmenter to perform segmentation focusing on the given
 * region of interest.
 *
 * The API expects a TFLite model with mandatory TFLite Model Metadata.
 *
 * Input tensor:
 *   (kTfLiteUInt8/kTfLiteFloat32)
 *   - image input of size `[batch x height x width x channels]`.
 *   - batch inference is not supported (`batch` is required to be 1).
 *   - RGB inputs is supported (`channels` is required to be 3).
 *   - if type is kTfLiteFloat32, NormalizationOptions are required to be
 *     attached to the metadata for input normalization.
 * Output tensors:
 *  (kTfLiteUInt8/kTfLiteFloat32)
 *   - list of segmented masks.
 *   - if `output_type` is CATEGORY_MASK, uint8 Image, Image vector of size 1.
 *   - if `output_type` is CONFIDENCE_MASK, float32 Image list of size
 *     `channels`.
 *   - batch is always 1
 */
export declare class InteractiveSegmenter extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new interactive segmenter from
     * the provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param interactiveSegmenterOptions The options for the Interactive
     *     Segmenter. Note that either a path to the model asset or a model buffer
     *     needs to be provided (via `baseOptions`).
     * @return A new `InteractiveSegmenter`.
     */
    static createFromOptions(wasmFileset: WasmFileset, interactiveSegmenterOptions: InteractiveSegmenterOptions): Promise<InteractiveSegmenter>;
    /**
     * Initializes the Wasm runtime and creates a new interactive segmenter based
     * on the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     * @return A new `InteractiveSegmenter`.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<InteractiveSegmenter>;
    /**
     * Initializes the Wasm runtime and creates a new interactive segmenter based
     * on the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of
     *     the Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     * @return A new `InteractiveSegmenter`.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<InteractiveSegmenter>;
    private constructor();
    /**
     * Sets new options for the interactive segmenter.
     *
     * Calling `setOptions()` with a subset of options only affects those
     * options. You can reset an option back to its default value by
     * explicitly setting it to `undefined`.
     *
     * @export
     * @param options The options for the interactive segmenter.
     * @return A Promise that resolves when the settings have been applied.
     */
    setOptions(options: InteractiveSegmenterOptions): Promise<void>;
    /**
     * Performs interactive segmentation on the provided single image and invokes
     * the callback with the response. The method returns synchronously once the
     * callback returns. The `roi` parameter is used to represent a user's region
     * of interest for segmentation.
     *
     * @param image An image to process.
     * @param roi The region of interest for segmentation.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segment(image: ImageSource, roi: RegionOfInterest, callback: InteractiveSegmenterCallback): void;
    /**
     * Performs interactive segmentation on the provided single image and invokes
     * the callback with the response. The method returns synchronously once the
     * callback returns. The `roi` parameter is used to represent a user's region
     * of interest for segmentation.
     *
     * The 'image_processing_options' parameter can be used to specify the
     * rotation to apply to the image before performing segmentation, by setting
     * its 'rotationDegrees' field. Note that specifying a region-of-interest
     * using the 'regionOfInterest' field is NOT supported and will result in an
     * error.
     *
     * @param image An image to process.
     * @param roi The region of interest for segmentation.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @param callback The callback that is invoked with the segmented masks. The
     *    lifetime of the returned data is only guaranteed for the duration of the
     *    callback.
     */
    segment(image: ImageSource, roi: RegionOfInterest, imageProcessingOptions: ImageProcessingOptions, callback: InteractiveSegmenterCallback): void;
    /**
     * Performs interactive segmentation on the provided video frame and returns
     * the segmentation result. This method creates a copy of the resulting masks
     * and should not be used in high-throughput applications. The `roi` parameter
     * is used to represent a user's region of interest for segmentation.
     *
     * @param image An image to process.
     * @param roi The region of interest for segmentation.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     limits.
     */
    segment(image: ImageSource, roi: RegionOfInterest): InteractiveSegmenterResult;
    /**
     * Performs interactive segmentation on the provided video frame and returns
     * the segmentation result. This method creates a copy of the resulting masks
     * and should not be used in high-throughput applications. The `roi` parameter
     * is used to represent a user's region of interest for segmentation.
     *
     * The 'image_processing_options' parameter can be used to specify the
     * rotation to apply to the image before performing segmentation, by setting
     * its 'rotationDegrees' field. Note that specifying a region-of-interest
     * using the 'regionOfInterest' field is NOT supported and will result in an
     * error.
     *
     * @param image An image to process.
     * @param roi The region of interest for segmentation.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The segmentation result. The data is copied to avoid lifetime
     *     limits.
     */
    segment(image: ImageSource, roi: RegionOfInterest, imageProcessingOptions: ImageProcessingOptions): InteractiveSegmenterResult;
}

/**
 * A callback that receives the computed masks from the interactive segmenter.
 * The returned data is only valid for the duration of the callback. If
 * asynchronous processing is needed, all data needs to be copied before the
 * callback returns.
 */
export declare type InteractiveSegmenterCallback = (result: InteractiveSegmenterResult) => void;

/** Options to configure the MediaPipe Interactive Segmenter Task */
export declare interface InteractiveSegmenterOptions extends TaskRunnerOptions {
    /** Whether to output confidence masks. Defaults to true. */
    outputConfidenceMasks?: boolean | undefined;
    /** Whether to output the category masks. Defaults to false. */
    outputCategoryMask?: boolean | undefined;
}

/** The output result of InteractiveSegmenter. */
export declare class InteractiveSegmenterResult {
    /**
     * Multiple masks represented as `Float32Array` or `WebGLTexture`-backed
     * `MPImage`s where, for each mask, each pixel represents the prediction
     * confidence, usually in the [0, 1] range.
     * @export
     */
    readonly confidenceMasks?: MPMask[] | undefined;
    /**
     * A category mask represented as a `Uint8ClampedArray` or
     * `WebGLTexture`-backed `MPImage` where each pixel represents the class
     * which the pixel in the original image was predicted to belong to.
     * @export
     */
    readonly categoryMask?: MPMask | undefined;
    /**
     * The quality scores of the result masks, in the range of [0, 1].
     * Defaults to `1` if the model doesn't output quality scores. Each
     * element corresponds to the score of the category in the model outputs.
     * @export
     */
    readonly qualityScores?: number[] | undefined;
    constructor(
    /**
     * Multiple masks represented as `Float32Array` or `WebGLTexture`-backed
     * `MPImage`s where, for each mask, each pixel represents the prediction
     * confidence, usually in the [0, 1] range.
     * @export
     */
    confidenceMasks?: MPMask[] | undefined, 
    /**
     * A category mask represented as a `Uint8ClampedArray` or
     * `WebGLTexture`-backed `MPImage` where each pixel represents the class
     * which the pixel in the original image was predicted to belong to.
     * @export
     */
    categoryMask?: MPMask | undefined, 
    /**
     * The quality scores of the result masks, in the range of [0, 1].
     * Defaults to `1` if the model doesn't output quality scores. Each
     * element corresponds to the score of the category in the model outputs.
     * @export
     */
    qualityScores?: number[] | undefined);
    /**
     * Frees the resources held by the category and confidence masks.
     * @export
     */
    close(): void;
}

/**
 * Landmark represents a point in 3D space with x, y, z coordinates. The
 * landmark coordinates are in meters. z represents the landmark depth,
 * and the smaller the value the closer the world landmark is to the camera.
 */
export declare interface Landmark {
    /** The x coordinates of the landmark. */
    x: number;
    /** The y coordinates of the landmark. */
    y: number;
    /** The z coordinates of the landmark. */
    z: number;
}

/** Data that a user can use to specialize drawing options. */
export declare interface LandmarkData {
    index?: number;
    from?: NormalizedLandmark;
    to?: NormalizedLandmark;
}

/**
 * Copyright 2023 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** A two-dimensional matrix. */
declare interface Matrix {
    /** The number of rows. */
    rows: number;
    /** The number of columns. */
    columns: number;
    /** The values as a flattened one-dimensional array. */
    data: number[];
}

/**
 * The wrapper class for MediaPipe Image objects.
 *
 * Images are stored as `ImageData`, `ImageBitmap` or `WebGLTexture` objects.
 * You can convert the underlying type to any other type by passing the
 * desired type to `getAs...()`. As type conversions can be expensive, it is
 * recommended to limit these conversions. You can verify what underlying
 * types are already available by invoking `has...()`.
 *
 * Images that are returned from a MediaPipe Tasks are owned by by the
 * underlying C++ Task. If you need to extend the lifetime of these objects,
 * you can invoke the `clone()` method. To free up the resources obtained
 * during any clone or type conversion operation, it is important to invoke
 * `close()` on the `MPImage` instance.
 *
 * Converting to and from ImageBitmap requires that the MediaPipe task is
 * initialized with an `OffscreenCanvas`. As we require WebGL2 support, this
 * places some limitations on Browser support as outlined here:
 * https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas/getContext
 */
export declare class MPImage {
    /** Returns the canvas element that the image is bound to. */
    readonly canvas: HTMLCanvasElement | OffscreenCanvas | undefined;
    /** Returns the width of the image. */
    readonly width: number;
    /** Returns the height of the image. */
    readonly height: number;
    private constructor();
    /**
     * Returns whether this `MPImage` contains a mask of type `ImageData`.
     * @export
     */
    hasImageData(): boolean;
    /**
     * Returns whether this `MPImage` contains a mask of type `ImageBitmap`.
     * @export
     */
    hasImageBitmap(): boolean;
    /**
     * Returns whether this `MPImage` contains a mask of type `WebGLTexture`.
     * @export
     */
    hasWebGLTexture(): boolean;
    /**
     * Returns the underlying image as an `ImageData` object. Note that this
     * involves an expensive GPU to CPU transfer if the current image is only
     * available as an `ImageBitmap` or `WebGLTexture`.
     *
     * @export
     * @return The current image as an ImageData object.
     */
    getAsImageData(): ImageData;
    /**
     * Returns the underlying image as an `ImageBitmap`. Note that
     * conversions to `ImageBitmap` are expensive, especially if the data
     * currently resides on CPU.
     *
     * Processing with `ImageBitmap`s requires that the MediaPipe Task was
     * initialized with an `OffscreenCanvas` with WebGL2 support. See
     * https://developer.mozilla.org/en-US/docs/Web/API/OffscreenCanvas/getContext
     * for a list of supported platforms.
     *
     * @export
     * @return The current image as an ImageBitmap object.
     */
    getAsImageBitmap(): ImageBitmap;
    /**
     * Returns the underlying image as a `WebGLTexture` object. Note that this
     * involves a CPU to GPU transfer if the current image is only available as
     * an `ImageData` object. The returned texture is bound to the current
     * canvas (see `.canvas`).
     *
     * @export
     * @return The current image as a WebGLTexture.
     */
    getAsWebGLTexture(): WebGLTexture;
    /**
     * Creates a copy of the resources stored in this `MPImage`. You can invoke
     * this method to extend the lifetime of an image returned by a MediaPipe
     * Task. Note that performance critical applications should aim to only use
     * the `MPImage` within the MediaPipe Task callback so that copies can be
     * avoided.
     *
     * @export
     */
    clone(): MPImage;
    /**
     * Frees up any resources owned by this `MPImage` instance.
     *
     * Note that this method does not free images that are owned by the C++
     * Task, as these are freed automatically once you leave the MediaPipe
     * callback. Additionally, some shared state is freed only once you invoke the
     * Task's `close()` method.
     *
     * @export
     */
    close(): void;
}

/**
 * The wrapper class for MediaPipe segmentation masks.
 *
 * Masks are stored as `Uint8Array`, `Float32Array` or `WebGLTexture` objects.
 * You can convert the underlying type to any other type by passing the desired
 * type to `getAs...()`. As type conversions can be expensive, it is recommended
 * to limit these conversions. You can verify what underlying types are already
 * available by invoking `has...()`.
 *
 * Masks that are returned from a MediaPipe Tasks are owned by by the
 * underlying C++ Task. If you need to extend the lifetime of these objects,
 * you can invoke the `clone()` method. To free up the resources obtained
 * during any clone or type conversion operation, it is important to invoke
 * `close()` on the `MPMask` instance.
 */
export declare class MPMask {
    readonly interpolateValues: boolean;
    /** Returns the canvas element that the mask is bound to. */
    readonly canvas: HTMLCanvasElement | OffscreenCanvas | undefined;
    /** Returns the width of the mask. */
    readonly width: number;
    /** Returns the height of the mask. */
    readonly height: number;
    private constructor();
    /**
     * Returns whether this `MPMask` contains a mask of type `Uint8Array`.
     * @export
     */
    hasUint8Array(): boolean;
    /**
     * Returns whether this `MPMask` contains a mask of type `Float32Array`.
     * @export
     */
    hasFloat32Array(): boolean;
    /**
     * Returns whether this `MPMask` contains a mask of type `WebGLTexture`.
     * @export
     */
    hasWebGLTexture(): boolean;
    /**
     * Returns the underlying mask as a Uint8Array`. Note that this involves an
     * expensive GPU to CPU transfer if the current mask is only available as a
     * `WebGLTexture`.
     *
     * @export
     * @return The current data as a Uint8Array.
     */
    getAsUint8Array(): Uint8Array;
    /**
     * Returns the underlying mask as a single channel `Float32Array`. Note that
     * this involves an expensive GPU to CPU transfer if the current mask is
     * only available as a `WebGLTexture`.
     *
     * @export
     * @return The current mask as a Float32Array.
     */
    getAsFloat32Array(): Float32Array;
    /**
     * Returns the underlying mask as a `WebGLTexture` object. Note that this
     * involves a CPU to GPU transfer if the current mask is only available as
     * a CPU array. The returned texture is bound to the current canvas (see
     * `.canvas`).
     *
     * @export
     * @return The current mask as a WebGLTexture.
     */
    getAsWebGLTexture(): WebGLTexture;
    /**
     * Creates a copy of the resources stored in this `MPMask`. You can
     * invoke this method to extend the lifetime of a mask returned by a
     * MediaPipe Task. Note that performance critical applications should aim to
     * only use the `MPMask` within the MediaPipe Task callback so that
     * copies can be avoided.
     *
     * @export
     */
    clone(): MPMask;
    /**
     * Frees up any resources owned by this `MPMask` instance.
     *
     * Note that this method does not free masks that are owned by the C++
     * Task, as these are freed automatically once you leave the MediaPipe
     * callback. Additionally, some shared state is freed only once you invoke
     * the Task's `close()` method.
     *
     * @export
     */
    close(): void;
}

/**
 * Copyright 2023 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * A keypoint, defined by the coordinates (x, y), normalized by the image
 * dimensions.
 */
declare interface NormalizedKeypoint {
    /** X in normalized image coordinates. */
    x: number;
    /** Y in normalized image coordinates. */
    y: number;
    /** Optional label of the keypoint. */
    label?: string;
    /** Optional score of the keypoint. */
    score?: number;
}

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/**
 * Normalized Landmark represents a point in 3D space with x, y, z coordinates.
 * x and y are normalized to [0.0, 1.0] by the image width and height
 * respectively. z represents the landmark depth, and the smaller the value the
 * closer the landmark is to the camera. The magnitude of z uses roughly the
 * same scale as x.
 */
export declare interface NormalizedLandmark {
    /** The x coordinates of the normalized landmark. */
    x: number;
    /** The y coordinates of the normalized landmark. */
    y: number;
    /** The z coordinates of the normalized landmark. */
    z: number;
}

/**
 * Performs object detection on images.
 */
export declare class ObjectDetector extends VisionTaskRunner {
    /**
     * Initializes the Wasm runtime and creates a new object detector from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param objectDetectorOptions The options for the Object Detector. Note that
     *     either a path to the model asset or a model buffer needs to be
     *     provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, objectDetectorOptions: ObjectDetectorOptions): Promise<ObjectDetector>;
    /**
     * Initializes the Wasm runtime and creates a new object detector based on the
     * provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<ObjectDetector>;
    /**
     * Initializes the Wasm runtime and creates a new object detector based on the
     * path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<ObjectDetector>;
    private constructor();
    /**
     * Sets new options for the object detector.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the object detector.
     */
    setOptions(options: ObjectDetectorOptions): Promise<void>;
    /**
     * Performs object detection on the provided single image and waits
     * synchronously for the response. Only use this method when the
     * ObjectDetector is created with running mode `image`.
     *
     * @export
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return A result containing a list of detected objects.
     */
    detect(image: ImageSource, imageProcessingOptions?: ImageProcessingOptions): DetectionResult;
    /**
     * Performs object detection on the provided video frame and waits
     * synchronously for the response. Only use this method when the
     * ObjectDetector is created with running mode `video`.
     *
     * @export
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return A result containing a list of detected objects.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions?: ImageProcessingOptions): DetectionResult;
}

/** Options to configure the MediaPipe Object Detector Task */
export declare interface ObjectDetectorOptions extends VisionTaskOptions, ClassifierOptions {
}

/** Performs pose landmarks detection on images. */
export declare class PoseLandmarker extends VisionTaskRunner {
    /**
     * An array containing the pairs of pose landmark indices to be rendered with
     * connections.
     * @export
     * @nocollapse
     */
    static POSE_CONNECTIONS: Connection[];
    /**
     * Initializes the Wasm runtime and creates a new `PoseLandmarker` from the
     * provided options.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param poseLandmarkerOptions The options for the PoseLandmarker.
     *     Note that either a path to the model asset or a model buffer needs to
     *     be provided (via `baseOptions`).
     */
    static createFromOptions(wasmFileset: WasmFileset, poseLandmarkerOptions: PoseLandmarkerOptions): Promise<PoseLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `PoseLandmarker` based on
     * the provided model asset buffer.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetBuffer A binary representation of the model.
     */
    static createFromModelBuffer(wasmFileset: WasmFileset, modelAssetBuffer: Uint8Array): Promise<PoseLandmarker>;
    /**
     * Initializes the Wasm runtime and creates a new `PoseLandmarker` based on
     * the path to the model asset.
     * @export
     * @param wasmFileset A configuration object that provides the location of the
     *     Wasm binary and its loader.
     * @param modelAssetPath The path to the model asset.
     */
    static createFromModelPath(wasmFileset: WasmFileset, modelAssetPath: string): Promise<PoseLandmarker>;
    private constructor();
    /**
     * Sets new options for this `PoseLandmarker`.
     *
     * Calling `setOptions()` with a subset of options only affects those options.
     * You can reset an option back to its default value by explicitly setting it
     * to `undefined`.
     *
     * @export
     * @param options The options for the pose landmarker.
     */
    setOptions(options: PoseLandmarkerOptions): Promise<void>;
    /**
     * Performs pose detection on the provided single image and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the PoseLandmarker is created
     * with running mode `image`.
     *
     * @param image An image to process.
     * @param callback The callback that is invoked with the result. The
     *    lifetime of the returned masks is only guaranteed for the duration of
     *    the callback.
     */
    detect(image: ImageSource, callback: PoseLandmarkerCallback): void;
    /**
     * Performs pose detection on the provided single image and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the PoseLandmarker is created
     * with running mode `image`.
     *
     * @param image An image to process.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @param callback The callback that is invoked with the result. The
     *    lifetime of the returned masks is only guaranteed for the duration of
     *    the callback.
     */
    detect(image: ImageSource, imageProcessingOptions: ImageProcessingOptions, callback: PoseLandmarkerCallback): void;
    /**
     * Performs pose detection on the provided single image and waits
     * synchronously for the response. This method creates a copy of the resulting
     * masks and should not be used in high-throughput applications. Only
     * use this method when the PoseLandmarker is created with running mode
     * `image`.
     *
     * @param image An image to process.
     * @return The landmarker result. Any masks are copied to avoid lifetime
     *     limits.
     * @return The detected pose landmarks.
     */
    detect(image: ImageSource): PoseLandmarkerResult;
    /**
     * Performs pose detection on the provided single image and waits
     * synchronously for the response. This method creates a copy of the resulting
     * masks and should not be used in high-throughput applications. Only
     * use this method when the PoseLandmarker is created with running mode
     * `image`.
     *
     * @param image An image to process.
     * @return The landmarker result. Any masks are copied to avoid lifetime
     *     limits.
     * @return The detected pose landmarks.
     */
    detect(image: ImageSource, imageProcessingOptions: ImageProcessingOptions): PoseLandmarkerResult;
    /**
     * Performs pose detection on the provided video frame and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the PoseLandmarker is created
     * with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param callback The callback that is invoked with the result. The
     *    lifetime of the returned masks is only guaranteed for the duration of
     *    the callback.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, callback: PoseLandmarkerCallback): void;
    /**
     * Performs pose detection on the provided video frame and invokes the
     * callback with the response. The method returns synchronously once the
     * callback returns. Only use this method when the PoseLandmarker is created
     * with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @param callback The callback that is invoked with the result. The
     *    lifetime of the returned masks is only guaranteed for the duration of
     *    the callback.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions: ImageProcessingOptions, callback: PoseLandmarkerCallback): void;
    /**
     * Performs pose detection on the provided video frame and returns the result.
     * This method creates a copy of the resulting masks and should not be used
     * in high-throughput applications. Only use this method when the
     * PoseLandmarker is created with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @return The landmarker result. Any masks are copied to extend the
     *     lifetime of the returned data.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number): PoseLandmarkerResult;
    /**
     * Performs pose detection on the provided video frame and returns the result.
     * This method creates a copy of the resulting masks and should not be used
     * in high-throughput applications. The method returns synchronously once the
     * callback returns. Only use this method when the PoseLandmarker is created
     * with running mode `video`.
     *
     * @param videoFrame A video frame to process.
     * @param timestamp The timestamp of the current frame, in ms.
     * @param imageProcessingOptions the `ImageProcessingOptions` specifying how
     *    to process the input image before running inference.
     * @return The landmarker result. Any masks are copied to extend the lifetime
     *     of the returned data.
     */
    detectForVideo(videoFrame: ImageSource, timestamp: number, imageProcessingOptions: ImageProcessingOptions): PoseLandmarkerResult;
}

/**
 * A callback that receives the result from the pose detector. The returned
 * masks are only valid for the duration of the callback. If asynchronous
 * processing is needed, the masks need to be copied before the callback
 * returns.
 */
export declare type PoseLandmarkerCallback = (result: PoseLandmarkerResult) => void;

/** Options to configure the MediaPipe PoseLandmarker Task */
export declare interface PoseLandmarkerOptions extends VisionTaskOptions {
    /**
     * The maximum number of poses can be detected by the PoseLandmarker.
     * Defaults to 1.
     */
    numPoses?: number | undefined;
    /**
     * The minimum confidence score for the pose detection to be considered
     * successful. Defaults to 0.5.
     */
    minPoseDetectionConfidence?: number | undefined;
    /**
     * The minimum confidence score of pose presence score in the pose landmark
     * detection. Defaults to 0.5.
     */
    minPosePresenceConfidence?: number | undefined;
    /**
     * The minimum confidence score for the pose tracking to be considered
     * successful. Defaults to 0.5.
     */
    minTrackingConfidence?: number | undefined;
    /** Whether to output segmentation masks. Defaults to false. */
    outputSegmentationMasks?: boolean | undefined;
}

/**
 * Represents the pose landmarks deection results generated by `PoseLandmarker`.
 * Each vector element represents a single pose detected in the image.
 */
export declare class PoseLandmarkerResult {
    readonly landmarks: NormalizedLandmark[][];
    /** Pose landmarks in world coordinates of detected poses. */
    readonly worldLandmarks: Landmark[][];
    /** Segmentation mask for the detected pose. */
    readonly segmentationMasks?: MPMask[] | undefined;
    constructor(/** Pose landmarks of detected poses. */ landmarks: NormalizedLandmark[][], 
    /** Pose landmarks in world coordinates of detected poses. */
    worldLandmarks: Landmark[][], 
    /** Segmentation mask for the detected pose. */
    segmentationMasks?: MPMask[] | undefined);
    /** Frees the resources held by the segmentation masks. */
    close(): void;
}

/**
 * Defines a rectangle, used e.g. as part of detection results or as input
 * region-of-interest.
 *
 * The coordinates are normalized with respect to the image dimensions, i.e.
 * generally in [0,1] but they may exceed these bounds if describing a region
 * overlapping the image. The origin is on the top-left corner of the image.
 */
declare interface RectF {
    left: number;
    top: number;
    right: number;
    bottom: number;
}

/** A Region-Of-Interest (ROI) to represent a region within an image. */
export declare interface RegionOfInterest {
    /** The ROI in keypoint format. */
    keypoint?: NormalizedKeypoint;
    /** The ROI as scribbles over the object that the user wants to segment. */
    scribble?: NormalizedKeypoint[];
}

/**
 * A four channel color with values for red, green, blue and alpha
 * respectively.
 */
export declare type RGBAColor = [
number,
number,
number,
number
] | number[];

/**
 * The two running modes of a vision task.
 * 1) The image mode for processing single image inputs.
 * 2) The video mode for processing decoded frames of a video.
 */
declare type RunningMode = "IMAGE" | "VIDEO";

/** Base class for all MediaPipe Tasks. */
declare abstract class TaskRunner {
    protected constructor();
    /** Configures the task with custom options. */
    abstract setOptions(options: TaskRunnerOptions): Promise<void>;
    /**
     * Closes and cleans up the resources held by this task.
     * @export
     */
    close(): void;
}

/** Options to configure MediaPipe Tasks in general. */
declare interface TaskRunnerOptions {
    /** Options to configure the loading of the model assets. */
    baseOptions?: BaseOptions_2;
}

/** The options for configuring a MediaPipe vision task. */
declare interface VisionTaskOptions extends TaskRunnerOptions {
    /**
     * The canvas element to bind textures to. This has to be set for GPU
     * processing. The task will initialize a WebGL context and throw an error if
     * this fails (e.g. if you have already initialized a different type of
     * context).
     */
    canvas?: HTMLCanvasElement | OffscreenCanvas;
    /**
     * The running mode of the task. Default to the image mode.
     * Vision tasks have two running modes:
     * 1) The image mode for processing single image inputs.
     * 2) The video mode for processing decoded frames of a video.
     */
    runningMode?: RunningMode;
}

/** Base class for all MediaPipe Vision Tasks. */
declare abstract class VisionTaskRunner extends TaskRunner {
    protected constructor();
    /**
     * Closes and cleans up the resources held by this task.
     * @export
     */
    close(): void;
}

/**
 * Copyright 2022 The MediaPipe Authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
/** An object containing the locations of the Wasm assets */
declare interface WasmFileset {
    /** The path to the Wasm loader script. */
    wasmLoaderPath: string;
    /** The path to the Wasm binary. */
    wasmBinaryPath: string;
    /** The optional path to the asset loader script. */
    assetLoaderPath?: string;
    /** The optional path to the assets binary. */
    assetBinaryPath?: string;
}

export { }