1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
uniform float iTime;
// Originally from: https://www.shadertoy.com/view/3ljyDD
// License CC0: Hexagonal tiling + cog wheels
// Nothing fancy, just hexagonal tiling + cog wheels
#define PI 3.141592654
#define TAU (2.0*PI)
#define MROT(a) mat2(cos(a), sin(a), -sin(a), cos(a))
float hash(in vec2 co) {
return fract(sin(dot(co.xy ,vec2(12.9898,58.233))) * 13758.5453);
}
float pcos(float a) {
return 0.5 + 0.5*cos(a);
}
void rot(inout vec2 p, float a) {
float c = cos(a);
float s = sin(a);
p = vec2(c*p.x + s*p.y, -s*p.x + c*p.y);
}
float modPolar(inout vec2 p, float repetitions) {
float angle = 2.0*PI/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
float c = floor(a/angle);
a = mod(a,angle) - angle/2.;
p = vec2(cos(a), sin(a))*r;
// For an odd number of repetitions, fix cell index of the cell in -x direction
// (cell index would be e.g. -5 and 5 in the two halves of the cell):
if (abs(c) >= (repetitions/2.0)) c = abs(c);
return c;
}
float pmin(float a, float b, float k) {
float h = clamp( 0.5+0.5*(b-a)/k, 0.0, 1.0 );
return mix( b, a, h ) - k*h*(1.0-h);
}
const vec2 sz = vec2(1.0, sqrt(3.0));
const vec2 hsz = 0.5*sz;
const float smallCount = 16.0;
vec2 hextile(inout vec2 p) {
// See Art of Code: Hexagonal Tiling Explained!
// https://www.youtube.com/watch?v=VmrIDyYiJBA
vec2 p1 = mod(p, sz)-hsz;
vec2 p2 = mod(p - hsz*1.0, sz)-hsz;
vec2 p3 = mix(p2, p1, vec2(length(p1) < length(p2)));
vec2 n = p3 - p;
p = p3;
return n;
}
float circle(vec2 p, float r) {
return length(p) - r;
}
float box(vec2 p, vec2 b) {
vec2 d = abs(p)-b;
return length(max(d,0.0)) + min(max(d.x,d.y),0.0);
}
float unevenCapsule(vec2 p, float r1, float r2, float h) {
p.x = abs(p.x);
float b = (r1-r2)/h;
float a = sqrt(1.0-b*b);
float k = dot(p,vec2(-b,a));
if( k < 0.0 ) return length(p) - r1;
if( k > a*h ) return length(p-vec2(0.0,h)) - r2;
return dot(p, vec2(a,b) ) - r1;
}
float cogwheel(vec2 p, float innerRadius, float outerRadius, float cogs, float holes) {
float cogWidth = 0.25*innerRadius*TAU/cogs;
float d0 = circle(p, innerRadius);
vec2 icp = p;
modPolar(icp, holes);
icp -= vec2(innerRadius*0.55, 0.0);
float d1 = circle(icp, innerRadius*0.25);
vec2 cp = p;
modPolar(cp, cogs);
cp -= vec2(innerRadius, 0.0);
float d2 = unevenCapsule(cp.yx, cogWidth, cogWidth*0.75, (outerRadius-innerRadius));
float d3 = circle(p, innerRadius*0.20);
float d = 1E6;
d = min(d, d0);
d = pmin(d, d2, 0.5*cogWidth);
d = min(d, d2);
d = max(d, -d1);
d = max(d, -d3);
return d;
}
float ccell1(vec2 p, float r) {
float d = 1E6;
const float bigCount = 60.0;
vec2 cp0 = p;
rot(cp0, -iTime*TAU/bigCount);
float d0 = cogwheel(cp0, 0.36, 0.38, bigCount, 5.0);
vec2 cp1 = p;
float nm = modPolar(cp1, 6.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
d = min(d, d0);
d = min(d, d1);
return d;
}
float ccell2(vec2 p, float r) {
float d = 1E6;
vec2 cp0 = p;
float nm = modPolar(cp0, 6.0);
vec2 cp1 = cp0;
const float off = 0.275;
const float count = smallCount + 2.0;
cp0 -= vec2(off, 0.0);
rot(cp0, 0.+TAU*nm/2.0 - iTime*TAU/count);
float d0 = cogwheel(cp0, 0.09, 0.105, count, 5.0);
cp1 -= vec2(0.5, 0.0);
rot(cp1, 0.2+TAU*nm/2.0 + iTime*TAU/smallCount);
float d1 = cogwheel(cp1, 0.11, 0.125, smallCount, 5.0);
float l = length(p);
float d2 = l - (off+0.055);
float d3 = d2 + 0.020;;
vec2 tp0 = p;
modPolar(tp0, 60.0);
tp0.x -= off;
float d4 = box(tp0, vec2(0.0125, 0.005));
float ctime = -(iTime*0.05 + r)*TAU;
vec2 tp1 = p;
rot(tp1, ctime*12.0);
tp1.x -= 0.13;
float d5 = box(tp1, vec2(0.125, 0.005));
vec2 tp2 = p;
rot(tp2, ctime);
tp2.x -= 0.13*0.5;
float d6 = box(tp2, vec2(0.125*0.5, 0.0075));
float d7 = l - 0.025;
float d8 = l - 0.0125;
d = min(d, d0);
d = min(d, d1);
d = min(d, d2);
d = max(d, -d3);
d = min(d, d4);
d = min(d, d5);
d = min(d, d6);
d = min(d, d7);
d = max(d, -d8);
return d;
}
float df(vec2 p, float scale, inout vec2 nn) {
p /= scale;
nn = hextile(p);
nn = floor(nn + 0.5);
float r = hash(nn);
float d;;
if (r < 0.5) {
d = ccell1(p, r);
} else {
d = ccell2(p, r);
}
return d*scale;
}
vec3 postProcess(vec3 col, vec2 q) {
//col = saturate(col);
col=pow(clamp(col,0.0,1.0),vec3(0.75));
col=col*0.6+0.4*col*col*(3.0-2.0*col); // contrast
col=mix(col, vec3(dot(col, vec3(0.33))), -0.4); // satuation
col*=0.5+0.5*pow(19.0*q.x*q.y*(1.0-q.x)*(1.0-q.y),0.7); // vigneting
return col;
}
void mainImage(out vec4 fragColor, in vec2 fragCoord, in vec2 resolution, in vec2 uv) {
vec2 q = fragCoord/resolution.xy;
vec2 p = -1.0 + 2.0*q;
p.x *= resolution.x/resolution.y;
float tm = iTime*0.1;
p += vec2(cos(tm), sin(tm*sqrt(0.5)));
float z = mix(0.5, 1.0, pcos(tm*sqrt(0.3)));
float aa = 4.0 / resolution.y;
vec2 nn = vec2(0.0);
float d = df(p, z, nn);
vec3 col = vec3(160.0)/vec3(255.0);
vec3 baseCol = vec3(0.3);
vec4 logoCol = vec4(baseCol, 1.0)*smoothstep(-aa, 0.0, -d);
col = mix(col, logoCol.xyz, pow(logoCol.w, 8.0));
col += 0.4*pow(abs(sin(20.0*d)), 0.6);
col = postProcess(col, q);
fragColor = vec4(col, 1.0);
}
|