1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "audio/utility/channel_mixing_matrix.h"
#include <stddef.h>
#include <algorithm>
#include "audio/utility/channel_mixer.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
namespace {
ChannelLayout CheckInputLayout(ChannelLayout input_layout,
ChannelLayout output_layout) {
// Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
// which should map the back LR to side LR.
if (input_layout == CHANNEL_LAYOUT_5_0_BACK &&
output_layout == CHANNEL_LAYOUT_7_0) {
return CHANNEL_LAYOUT_5_0;
} else if (input_layout == CHANNEL_LAYOUT_5_1_BACK &&
output_layout == CHANNEL_LAYOUT_7_1) {
return CHANNEL_LAYOUT_5_1;
}
return input_layout;
}
} // namespace
static void ValidateLayout(ChannelLayout layout) {
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_NONE);
RTC_CHECK_LE(layout, CHANNEL_LAYOUT_MAX);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_UNSUPPORTED);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_DISCRETE);
RTC_CHECK_NE(layout, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC);
// Verify there's at least one channel. Should always be true here by virtue
// of not being one of the invalid layouts, but lets double check to be sure.
int channel_count = ChannelLayoutToChannelCount(layout);
RTC_DCHECK_GT(channel_count, 0);
// If we have more than one channel, verify a symmetric layout for sanity.
// The unit test will verify all possible layouts, so this can be a DCHECK.
// Symmetry allows simplifying the matrix building code by allowing us to
// assume that if one channel of a pair exists, the other will too.
if (channel_count > 1) {
// Assert that LEFT exists if and only if RIGHT exists, and so on.
RTC_DCHECK_EQ(ChannelOrder(layout, LEFT) >= 0,
ChannelOrder(layout, RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, SIDE_LEFT) >= 0,
ChannelOrder(layout, SIDE_RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, BACK_LEFT) >= 0,
ChannelOrder(layout, BACK_RIGHT) >= 0);
RTC_DCHECK_EQ(ChannelOrder(layout, LEFT_OF_CENTER) >= 0,
ChannelOrder(layout, RIGHT_OF_CENTER) >= 0);
} else {
RTC_DCHECK_EQ(layout, CHANNEL_LAYOUT_MONO);
}
}
ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout,
int input_channels,
ChannelLayout output_layout,
int output_channels)
: input_layout_(CheckInputLayout(input_layout, output_layout)),
input_channels_(input_channels),
output_layout_(output_layout),
output_channels_(output_channels) {
// Stereo down mix should never be the output layout.
RTC_CHECK_NE(output_layout, CHANNEL_LAYOUT_STEREO_DOWNMIX);
// Verify that the layouts are supported
if (input_layout != CHANNEL_LAYOUT_DISCRETE)
ValidateLayout(input_layout);
if (output_layout != CHANNEL_LAYOUT_DISCRETE)
ValidateLayout(output_layout);
}
ChannelMixingMatrix::~ChannelMixingMatrix() = default;
bool ChannelMixingMatrix::CreateTransformationMatrix(
std::vector<std::vector<float>>* matrix) {
matrix_ = matrix;
// Size out the initial matrix.
matrix_->reserve(output_channels_);
for (int output_ch = 0; output_ch < output_channels_; ++output_ch)
matrix_->push_back(std::vector<float>(input_channels_, 0));
// First check for discrete case.
if (input_layout_ == CHANNEL_LAYOUT_DISCRETE ||
output_layout_ == CHANNEL_LAYOUT_DISCRETE) {
// If the number of input channels is more than output channels, then
// copy as many as we can then drop the remaining input channels.
// If the number of input channels is less than output channels, then
// copy them all, then zero out the remaining output channels.
int passthrough_channels = std::min(input_channels_, output_channels_);
for (int i = 0; i < passthrough_channels; ++i)
(*matrix_)[i][i] = 1;
return true;
}
// If specified, use adjusted channel mapping for the VoIP scenario.
if (input_layout_ == CHANNEL_LAYOUT_MONO &&
ChannelLayoutToChannelCount(output_layout_) >= 2) {
// Only place the mono input in the front left and right channels.
(*matrix_)[0][0] = 1.f;
(*matrix_)[1][0] = 1.f;
for (size_t output_ch = 2; output_ch < matrix_->size(); ++output_ch) {
(*matrix_)[output_ch][0] = 0.f;
}
return true;
}
// Route matching channels and figure out which ones aren't accounted for.
for (Channels ch = LEFT; ch < CHANNELS_MAX + 1;
ch = static_cast<Channels>(ch + 1)) {
int input_ch_index = ChannelOrder(input_layout_, ch);
if (input_ch_index < 0)
continue;
int output_ch_index = ChannelOrder(output_layout_, ch);
if (output_ch_index < 0) {
unaccounted_inputs_.push_back(ch);
continue;
}
RTC_DCHECK_LT(static_cast<size_t>(output_ch_index), matrix_->size());
RTC_DCHECK_LT(static_cast<size_t>(input_ch_index),
(*matrix_)[output_ch_index].size());
(*matrix_)[output_ch_index][input_ch_index] = 1;
}
// If all input channels are accounted for, there's nothing left to do.
if (unaccounted_inputs_.empty()) {
// Since all output channels map directly to inputs we can optimize.
return true;
}
// Mix front LR into center.
if (IsUnaccounted(LEFT)) {
// When down mixing to mono from stereo, we need to be careful of full scale
// stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping
// so we use 1 / 2 instead.
float scale =
(output_layout_ == CHANNEL_LAYOUT_MONO && input_channels_ == 2)
? 0.5
: ChannelMixer::kHalfPower;
Mix(LEFT, CENTER, scale);
Mix(RIGHT, CENTER, scale);
}
// Mix center into front LR.
if (IsUnaccounted(CENTER)) {
// When up mixing from mono, just do a copy to front LR.
float scale =
(input_layout_ == CHANNEL_LAYOUT_MONO) ? 1 : ChannelMixer::kHalfPower;
MixWithoutAccounting(CENTER, LEFT, scale);
Mix(CENTER, RIGHT, scale);
}
// Mix back LR into: side LR || back center || front LR || front center.
if (IsUnaccounted(BACK_LEFT)) {
if (HasOutputChannel(SIDE_LEFT)) {
// If the input has side LR, mix back LR into side LR, but instead if the
// input doesn't have side LR (but output does) copy back LR to side LR.
float scale = HasInputChannel(SIDE_LEFT) ? ChannelMixer::kHalfPower : 1;
Mix(BACK_LEFT, SIDE_LEFT, scale);
Mix(BACK_RIGHT, SIDE_RIGHT, scale);
} else if (HasOutputChannel(BACK_CENTER)) {
// Mix back LR into back center.
Mix(BACK_LEFT, BACK_CENTER, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix back LR into front LR.
Mix(BACK_LEFT, LEFT, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix back LR into front center.
Mix(BACK_LEFT, CENTER, ChannelMixer::kHalfPower);
Mix(BACK_RIGHT, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix side LR into: back LR || back center || front LR || front center.
if (IsUnaccounted(SIDE_LEFT)) {
if (HasOutputChannel(BACK_LEFT)) {
// If the input has back LR, mix side LR into back LR, but instead if the
// input doesn't have back LR (but output does) copy side LR to back LR.
float scale = HasInputChannel(BACK_LEFT) ? ChannelMixer::kHalfPower : 1;
Mix(SIDE_LEFT, BACK_LEFT, scale);
Mix(SIDE_RIGHT, BACK_RIGHT, scale);
} else if (HasOutputChannel(BACK_CENTER)) {
// Mix side LR into back center.
Mix(SIDE_LEFT, BACK_CENTER, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, BACK_CENTER, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix side LR into front LR.
Mix(SIDE_LEFT, LEFT, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix side LR into front center.
Mix(SIDE_LEFT, CENTER, ChannelMixer::kHalfPower);
Mix(SIDE_RIGHT, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix back center into: back LR || side LR || front LR || front center.
if (IsUnaccounted(BACK_CENTER)) {
if (HasOutputChannel(BACK_LEFT)) {
// Mix back center into back LR.
MixWithoutAccounting(BACK_CENTER, BACK_LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, BACK_RIGHT, ChannelMixer::kHalfPower);
} else if (HasOutputChannel(SIDE_LEFT)) {
// Mix back center into side LR.
MixWithoutAccounting(BACK_CENTER, SIDE_LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, SIDE_RIGHT, ChannelMixer::kHalfPower);
} else if (output_layout_ > CHANNEL_LAYOUT_MONO) {
// Mix back center into front LR.
// TODO(dalecurtis): Not sure about these values?
MixWithoutAccounting(BACK_CENTER, LEFT, ChannelMixer::kHalfPower);
Mix(BACK_CENTER, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix back center into front center.
// TODO(dalecurtis): Not sure about these values?
Mix(BACK_CENTER, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix LR of center into: front LR || front center.
if (IsUnaccounted(LEFT_OF_CENTER)) {
if (HasOutputChannel(LEFT)) {
// Mix LR of center into front LR.
Mix(LEFT_OF_CENTER, LEFT, ChannelMixer::kHalfPower);
Mix(RIGHT_OF_CENTER, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix LR of center into front center.
Mix(LEFT_OF_CENTER, CENTER, ChannelMixer::kHalfPower);
Mix(RIGHT_OF_CENTER, CENTER, ChannelMixer::kHalfPower);
}
}
// Mix LFE into: front center || front LR.
if (IsUnaccounted(LFE)) {
if (!HasOutputChannel(CENTER)) {
// Mix LFE into front LR.
MixWithoutAccounting(LFE, LEFT, ChannelMixer::kHalfPower);
Mix(LFE, RIGHT, ChannelMixer::kHalfPower);
} else {
// Mix LFE into front center.
Mix(LFE, CENTER, ChannelMixer::kHalfPower);
}
}
// All channels should now be accounted for.
RTC_DCHECK(unaccounted_inputs_.empty());
// See if the output `matrix_` is simply a remapping matrix. If each input
// channel maps to a single output channel we can simply remap. Doing this
// programmatically is less fragile than logic checks on channel mappings.
for (int output_ch = 0; output_ch < output_channels_; ++output_ch) {
int input_mappings = 0;
for (int input_ch = 0; input_ch < input_channels_; ++input_ch) {
// We can only remap if each row contains a single scale of 1. I.e., each
// output channel is mapped from a single unscaled input channel.
if ((*matrix_)[output_ch][input_ch] != 1 || ++input_mappings > 1)
return false;
}
}
// If we've gotten here, `matrix_` is simply a remapping.
return true;
}
void ChannelMixingMatrix::AccountFor(Channels ch) {
unaccounted_inputs_.erase(
std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(), ch));
}
bool ChannelMixingMatrix::IsUnaccounted(Channels ch) const {
return std::find(unaccounted_inputs_.begin(), unaccounted_inputs_.end(),
ch) != unaccounted_inputs_.end();
}
bool ChannelMixingMatrix::HasInputChannel(Channels ch) const {
return ChannelOrder(input_layout_, ch) >= 0;
}
bool ChannelMixingMatrix::HasOutputChannel(Channels ch) const {
return ChannelOrder(output_layout_, ch) >= 0;
}
void ChannelMixingMatrix::Mix(Channels input_ch,
Channels output_ch,
float scale) {
MixWithoutAccounting(input_ch, output_ch, scale);
AccountFor(input_ch);
}
void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch,
Channels output_ch,
float scale) {
int input_ch_index = ChannelOrder(input_layout_, input_ch);
int output_ch_index = ChannelOrder(output_layout_, output_ch);
RTC_DCHECK(IsUnaccounted(input_ch));
RTC_DCHECK_GE(input_ch_index, 0);
RTC_DCHECK_GE(output_ch_index, 0);
RTC_DCHECK_EQ((*matrix_)[output_ch_index][input_ch_index], 0);
(*matrix_)[output_ch_index][input_ch_index] = scale;
}
} // namespace webrtc
|