1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/audio_converter.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include <vector>
#include "common_audio/channel_buffer.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "rtc_base/arraysize.h"
#include "test/gtest.h"
namespace webrtc {
typedef std::unique_ptr<ChannelBuffer<float>> ScopedBuffer;
// Sets the signal value to increase by `data` with every sample.
ScopedBuffer CreateBuffer(const std::vector<float>& data, size_t frames) {
const size_t num_channels = data.size();
ScopedBuffer sb(new ChannelBuffer<float>(frames, num_channels));
for (size_t i = 0; i < num_channels; ++i)
for (size_t j = 0; j < frames; ++j)
sb->channels()[i][j] = data[i] * j;
return sb;
}
void VerifyParams(const ChannelBuffer<float>& ref,
const ChannelBuffer<float>& test) {
EXPECT_EQ(ref.num_channels(), test.num_channels());
EXPECT_EQ(ref.num_frames(), test.num_frames());
}
// Computes the best SNR based on the error between `ref_frame` and
// `test_frame`. It searches around `expected_delay` in samples between the
// signals to compensate for the resampling delay.
float ComputeSNR(const ChannelBuffer<float>& ref,
const ChannelBuffer<float>& test,
size_t expected_delay) {
VerifyParams(ref, test);
float best_snr = 0;
size_t best_delay = 0;
// Search within one sample of the expected delay.
for (size_t delay = std::max(expected_delay, static_cast<size_t>(1)) - 1;
delay <= std::min(expected_delay + 1, ref.num_frames()); ++delay) {
float mse = 0;
float variance = 0;
float mean = 0;
for (size_t i = 0; i < ref.num_channels(); ++i) {
for (size_t j = 0; j < ref.num_frames() - delay; ++j) {
float error = ref.channels()[i][j] - test.channels()[i][j + delay];
mse += error * error;
variance += ref.channels()[i][j] * ref.channels()[i][j];
mean += ref.channels()[i][j];
}
}
const size_t length = ref.num_channels() * (ref.num_frames() - delay);
mse /= length;
variance /= length;
mean /= length;
variance -= mean * mean;
float snr = 100; // We assign 100 dB to the zero-error case.
if (mse > 0)
snr = 10 * std::log10(variance / mse);
if (snr > best_snr) {
best_snr = snr;
best_delay = delay;
}
}
printf("SNR=%.1f dB at delay=%zu\n", best_snr, best_delay);
return best_snr;
}
// Sets the source to a linearly increasing signal for which we can easily
// generate a reference. Runs the AudioConverter and ensures the output has
// sufficiently high SNR relative to the reference.
void RunAudioConverterTest(size_t src_channels,
int src_sample_rate_hz,
size_t dst_channels,
int dst_sample_rate_hz) {
const float kSrcLeft = 0.0002f;
const float kSrcRight = 0.0001f;
const float resampling_factor =
(1.f * src_sample_rate_hz) / dst_sample_rate_hz;
const float dst_left = resampling_factor * kSrcLeft;
const float dst_right = resampling_factor * kSrcRight;
const float dst_mono = (dst_left + dst_right) / 2;
const size_t src_frames = static_cast<size_t>(src_sample_rate_hz / 100);
const size_t dst_frames = static_cast<size_t>(dst_sample_rate_hz / 100);
std::vector<float> src_data(1, kSrcLeft);
if (src_channels == 2)
src_data.push_back(kSrcRight);
ScopedBuffer src_buffer = CreateBuffer(src_data, src_frames);
std::vector<float> dst_data(1, 0);
std::vector<float> ref_data;
if (dst_channels == 1) {
if (src_channels == 1)
ref_data.push_back(dst_left);
else
ref_data.push_back(dst_mono);
} else {
dst_data.push_back(0);
ref_data.push_back(dst_left);
if (src_channels == 1)
ref_data.push_back(dst_left);
else
ref_data.push_back(dst_right);
}
ScopedBuffer dst_buffer = CreateBuffer(dst_data, dst_frames);
ScopedBuffer ref_buffer = CreateBuffer(ref_data, dst_frames);
// The sinc resampler has a known delay, which we compute here.
const size_t delay_frames =
src_sample_rate_hz == dst_sample_rate_hz
? 0
: static_cast<size_t>(
PushSincResampler::AlgorithmicDelaySeconds(src_sample_rate_hz) *
dst_sample_rate_hz);
// SNR reported on the same line later.
printf("(%zu, %d Hz) -> (%zu, %d Hz) ", src_channels, src_sample_rate_hz,
dst_channels, dst_sample_rate_hz);
std::unique_ptr<AudioConverter> converter = AudioConverter::Create(
src_channels, src_frames, dst_channels, dst_frames);
converter->Convert(src_buffer->channels(), src_buffer->size(),
dst_buffer->channels(), dst_buffer->size());
EXPECT_LT(43.f,
ComputeSNR(*ref_buffer.get(), *dst_buffer.get(), delay_frames));
}
TEST(AudioConverterTest, ConversionsPassSNRThreshold) {
const int kSampleRates[] = {8000, 11025, 16000, 22050, 32000, 44100, 48000};
const int kChannels[] = {1, 2};
for (int src_rate : kSampleRates) {
for (int dst_rate : kSampleRates) {
for (size_t src_channels : kChannels) {
for (size_t dst_channels : kChannels) {
RunAudioConverterTest(src_channels, src_rate, dst_channels, dst_rate);
}
}
}
}
}
} // namespace webrtc
|