1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/resampler/push_sinc_resampler.h"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/sinusoidal_linear_chirp_source.h"
#include "rtc_base/time_utils.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
// Almost all conversions have an RMS error of around -14 dbFS.
const double kResamplingRMSError = -14.42;
// Used to convert errors to dbFS.
template <typename T>
T DBFS(T x) {
return 20 * std::log10(x);
}
} // namespace
class PushSincResamplerTest : public ::testing::TestWithParam<
::testing::tuple<int, int, double, double>> {
public:
PushSincResamplerTest()
: input_rate_(::testing::get<0>(GetParam())),
output_rate_(::testing::get<1>(GetParam())),
rms_error_(::testing::get<2>(GetParam())),
low_freq_error_(::testing::get<3>(GetParam())) {}
~PushSincResamplerTest() override {}
protected:
void ResampleBenchmarkTest(bool int_format);
void ResampleTest(bool int_format);
int input_rate_;
int output_rate_;
double rms_error_;
double low_freq_error_;
};
class ZeroSource : public SincResamplerCallback {
public:
void Run(size_t frames, float* destination) override {
std::memset(destination, 0, sizeof(float) * frames);
}
};
void PushSincResamplerTest::ResampleBenchmarkTest(bool int_format) {
const size_t input_samples = static_cast<size_t>(input_rate_ / 100);
const size_t output_samples = static_cast<size_t>(output_rate_ / 100);
const int kResampleIterations = 500000;
// Source for data to be resampled.
ZeroSource resampler_source;
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> source(new float[input_samples]);
std::unique_ptr<int16_t[]> source_int(new int16_t[input_samples]);
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_samples]);
resampler_source.Run(input_samples, source.get());
for (size_t i = 0; i < input_samples; ++i) {
source_int[i] = static_cast<int16_t>(floor(32767 * source[i] + 0.5));
}
printf("Benchmarking %d iterations of %d Hz -> %d Hz:\n", kResampleIterations,
input_rate_, output_rate_);
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler sinc_resampler(io_ratio, SincResampler::kDefaultRequestSize,
&resampler_source);
int64_t start = TimeNanos();
for (int i = 0; i < kResampleIterations; ++i) {
sinc_resampler.Resample(output_samples, resampled_destination.get());
}
double total_time_sinc_us = (TimeNanos() - start) / kNumNanosecsPerMicrosec;
printf("SincResampler took %.2f us per frame.\n",
total_time_sinc_us / kResampleIterations);
PushSincResampler resampler(input_samples, output_samples);
start = TimeNanos();
if (int_format) {
for (int i = 0; i < kResampleIterations; ++i) {
EXPECT_EQ(output_samples,
resampler.Resample(source_int.get(), input_samples,
destination_int.get(), output_samples));
}
} else {
for (int i = 0; i < kResampleIterations; ++i) {
EXPECT_EQ(output_samples, resampler.Resample(source.get(), input_samples,
resampled_destination.get(),
output_samples));
}
}
double total_time_us = (TimeNanos() - start) / kNumNanosecsPerMicrosec;
printf(
"PushSincResampler took %.2f us per frame; which is a %.1f%% overhead "
"on SincResampler.\n\n",
total_time_us / kResampleIterations,
(total_time_us - total_time_sinc_us) / total_time_sinc_us * 100);
}
// Disabled because it takes too long to run routinely. Use for performance
// benchmarking when needed.
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkInt) {
ResampleBenchmarkTest(true);
}
TEST_P(PushSincResamplerTest, DISABLED_BenchmarkFloat) {
ResampleBenchmarkTest(false);
}
// Tests resampling using a given input and output sample rate.
void PushSincResamplerTest::ResampleTest(bool int_format) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
// 10 ms blocks.
const size_t kNumBlocks = static_cast<size_t>(kTestDurationSecs * 100);
const size_t input_block_size = static_cast<size_t>(input_rate_ / 100);
const size_t output_block_size = static_cast<size_t>(output_rate_ / 100);
const size_t input_samples =
static_cast<size_t>(kTestDurationSecs * input_rate_);
const size_t output_samples =
static_cast<size_t>(kTestDurationSecs * output_rate_);
// Nyquist frequency for the input sampling rate.
const double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq, 0);
PushSincResampler resampler(input_block_size, output_block_size);
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
std::unique_ptr<float[]> resampled_destination(new float[output_samples]);
std::unique_ptr<float[]> pure_destination(new float[output_samples]);
std::unique_ptr<float[]> source(new float[input_samples]);
std::unique_ptr<int16_t[]> source_int(new int16_t[input_block_size]);
std::unique_ptr<int16_t[]> destination_int(new int16_t[output_block_size]);
// The sinc resampler has an implicit delay of approximately half the kernel
// size at the input sample rate. By moving to a push model, this delay
// becomes explicit and is managed by zero-stuffing in PushSincResampler. We
// deal with it in the test by delaying the "pure" source to match. It must be
// checked before the first call to Resample(), because ChunkSize() will
// change afterwards.
const size_t output_delay_samples =
output_block_size - resampler.get_resampler_for_testing()->ChunkSize();
// Generate resampled signal.
// With the PushSincResampler, we produce the signal block-by-10ms-block
// rather than in a single pass, to exercise how it will be used in WebRTC.
resampler_source.Run(input_samples, source.get());
if (int_format) {
for (size_t i = 0; i < kNumBlocks; ++i) {
FloatToS16(&source[i * input_block_size], input_block_size,
source_int.get());
EXPECT_EQ(output_block_size,
resampler.Resample(source_int.get(), input_block_size,
destination_int.get(), output_block_size));
S16ToFloat(destination_int.get(), output_block_size,
&resampled_destination[i * output_block_size]);
}
} else {
for (size_t i = 0; i < kNumBlocks; ++i) {
EXPECT_EQ(
output_block_size,
resampler.Resample(&source[i * input_block_size], input_block_size,
&resampled_destination[i * output_block_size],
output_block_size));
}
}
// Generate pure signal.
SinusoidalLinearChirpSource pure_source(
output_rate_, output_samples, input_nyquist_freq, output_delay_samples);
pure_source.Run(output_samples, pure_destination.get());
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
// we refer to as low and high.
static const double kLowFrequencyNyquistRange = 0.7;
static const double kHighFrequencyNyquistRange = 0.9;
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
double sum_of_squares = 0;
double low_freq_max_error = 0;
double high_freq_max_error = 0;
int minimum_rate = std::min(input_rate_, output_rate_);
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
for (size_t i = 0; i < output_samples; ++i) {
double error = fabs(resampled_destination[i] - pure_destination[i]);
if (pure_source.Frequency(i) < low_frequency_range) {
if (error > low_freq_max_error)
low_freq_max_error = error;
} else if (pure_source.Frequency(i) < high_frequency_range) {
if (error > high_freq_max_error)
high_freq_max_error = error;
}
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
sum_of_squares += error * error;
}
double rms_error = sqrt(sum_of_squares / output_samples);
rms_error = DBFS(rms_error);
// In order to keep the thresholds in this test identical to SincResamplerTest
// we must account for the quantization error introduced by truncating from
// float to int. This happens twice (once at input and once at output) and we
// allow for the maximum possible error (1 / 32767) for each step.
//
// The quantization error is insignificant in the RMS calculation so does not
// need to be accounted for there.
low_freq_max_error = DBFS(low_freq_max_error - 2.0 / 32767);
high_freq_max_error = DBFS(high_freq_max_error - 2.0 / 32767);
EXPECT_LE(rms_error, rms_error_);
EXPECT_LE(low_freq_max_error, low_freq_error_);
// All conversions currently have a high frequency error around -6 dbFS.
static const double kHighFrequencyMaxError = -6.01;
EXPECT_LE(high_freq_max_error, kHighFrequencyMaxError);
}
TEST_P(PushSincResamplerTest, ResampleInt) {
ResampleTest(true);
}
TEST_P(PushSincResamplerTest, ResampleFloat) {
ResampleTest(false);
}
// Thresholds chosen arbitrarily based on what each resampling reported during
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
INSTANTIATE_TEST_SUITE_P(
PushSincResamplerTest,
PushSincResamplerTest,
::testing::Values(
// First run through the rates tested in SincResamplerTest. The
// thresholds are identical.
//
// We don't directly test rates which fail to provide an integer number
// of samples in a 10 ms block (22050 and 11025 Hz), they are replaced
// by nearby rates in order to simplify testing.
//
// The PushSincResampler is in practice sample rate agnostic and derives
// resampling ratios from the block size, which for WebRTC purposes are
// blocks of floor(sample_rate/100) samples. So the 22050 Hz case is
// treated identically to the 22000 Hz case. Direct tests of 22050 Hz
// have to account for the simulated clock drift induced by the
// resampler inferring an incorrect sample rate ratio, without testing
// anything new within the resampler itself.
// To 22kHz
std::make_tuple(8000, 22000, kResamplingRMSError, -62.73),
std::make_tuple(11000, 22000, kResamplingRMSError, -74.17),
std::make_tuple(16000, 22000, kResamplingRMSError, -62.54),
std::make_tuple(22000, 22000, kResamplingRMSError, -73.53),
std::make_tuple(32000, 22000, kResamplingRMSError, -46.45),
std::make_tuple(44100, 22000, kResamplingRMSError, -28.34),
std::make_tuple(48000, 22000, -15.01, -25.56),
std::make_tuple(96000, 22000, -18.49, -13.30),
std::make_tuple(192000, 22000, -20.50, -9.20),
// To 44.1kHz
::testing::make_tuple(8000, 44100, kResamplingRMSError, -62.73),
::testing::make_tuple(11000, 44100, kResamplingRMSError, -63.57),
::testing::make_tuple(16000, 44100, kResamplingRMSError, -62.54),
::testing::make_tuple(22000, 44100, kResamplingRMSError, -62.73),
::testing::make_tuple(32000, 44100, kResamplingRMSError, -63.32),
::testing::make_tuple(44100, 44100, kResamplingRMSError, -73.53),
::testing::make_tuple(48000, 44100, -15.01, -64.04),
::testing::make_tuple(96000, 44100, -18.49, -25.51),
::testing::make_tuple(192000, 44100, -20.50, -13.31),
// To 48kHz
::testing::make_tuple(8000, 48000, kResamplingRMSError, -63.43),
::testing::make_tuple(11000, 48000, kResamplingRMSError, -63.96),
::testing::make_tuple(16000, 48000, kResamplingRMSError, -63.96),
::testing::make_tuple(22000, 48000, kResamplingRMSError, -63.80),
::testing::make_tuple(32000, 48000, kResamplingRMSError, -64.04),
::testing::make_tuple(44100, 48000, kResamplingRMSError, -62.63),
::testing::make_tuple(48000, 48000, kResamplingRMSError, -73.52),
::testing::make_tuple(96000, 48000, -18.40, -28.44),
::testing::make_tuple(192000, 48000, -20.43, -14.11),
// To 96kHz
::testing::make_tuple(8000, 96000, kResamplingRMSError, -63.19),
::testing::make_tuple(11000, 96000, kResamplingRMSError, -63.89),
::testing::make_tuple(16000, 96000, kResamplingRMSError, -63.39),
::testing::make_tuple(22000, 96000, kResamplingRMSError, -63.39),
::testing::make_tuple(32000, 96000, kResamplingRMSError, -63.95),
::testing::make_tuple(44100, 96000, kResamplingRMSError, -62.63),
::testing::make_tuple(48000, 96000, kResamplingRMSError, -73.52),
::testing::make_tuple(96000, 96000, kResamplingRMSError, -73.52),
::testing::make_tuple(192000, 96000, kResamplingRMSError, -28.41),
// To 192kHz
::testing::make_tuple(8000, 192000, kResamplingRMSError, -63.10),
::testing::make_tuple(11000, 192000, kResamplingRMSError, -63.17),
::testing::make_tuple(16000, 192000, kResamplingRMSError, -63.14),
::testing::make_tuple(22000, 192000, kResamplingRMSError, -63.14),
::testing::make_tuple(32000, 192000, kResamplingRMSError, -63.38),
::testing::make_tuple(44100, 192000, kResamplingRMSError, -62.63),
::testing::make_tuple(48000, 192000, kResamplingRMSError, -73.44),
::testing::make_tuple(96000, 192000, kResamplingRMSError, -73.52),
::testing::make_tuple(192000, 192000, kResamplingRMSError, -73.52),
// Next run through some additional cases interesting for WebRTC.
// We skip some extreme downsampled cases (192 -> {8, 16}, 96 -> 8)
// because they violate `kHighFrequencyMaxError`, which is not
// unexpected. It's very unlikely that we'll see these conversions in
// practice anyway.
// To 8 kHz
::testing::make_tuple(8000, 8000, kResamplingRMSError, -75.50),
::testing::make_tuple(16000, 8000, -18.56, -28.79),
::testing::make_tuple(32000, 8000, -20.36, -14.13),
::testing::make_tuple(44100, 8000, -21.00, -11.39),
::testing::make_tuple(48000, 8000, -20.96, -11.04),
// To 16 kHz
::testing::make_tuple(8000, 16000, kResamplingRMSError, -70.30),
::testing::make_tuple(11000, 16000, kResamplingRMSError, -72.31),
::testing::make_tuple(16000, 16000, kResamplingRMSError, -75.51),
::testing::make_tuple(22000, 16000, kResamplingRMSError, -52.08),
::testing::make_tuple(32000, 16000, -18.48, -28.59),
::testing::make_tuple(44100, 16000, -19.30, -19.67),
::testing::make_tuple(48000, 16000, -19.81, -18.11),
::testing::make_tuple(96000, 16000, -20.95, -10.9596),
// To 32 kHz
::testing::make_tuple(8000, 32000, kResamplingRMSError, -70.30),
::testing::make_tuple(11000, 32000, kResamplingRMSError, -71.34),
::testing::make_tuple(16000, 32000, kResamplingRMSError, -75.51),
::testing::make_tuple(22000, 32000, kResamplingRMSError, -72.05),
::testing::make_tuple(32000, 32000, kResamplingRMSError, -75.51),
::testing::make_tuple(44100, 32000, -16.44, -51.0349),
::testing::make_tuple(48000, 32000, -16.90, -43.9967),
::testing::make_tuple(96000, 32000, -19.61, -18.04),
::testing::make_tuple(192000, 32000, -21.02, -10.94)));
} // namespace webrtc
|