1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/vad/vad_core.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/vad/vad_filterbank.h"
#include "common_audio/vad/vad_gmm.h"
#include "common_audio/vad/vad_sp.h"
#include "rtc_base/sanitizer.h"
// Spectrum Weighting
static const int16_t kSpectrumWeight[kNumChannels] = {6, 8, 10, 12, 14, 16};
static const int16_t kNoiseUpdateConst = 655; // Q15
static const int16_t kSpeechUpdateConst = 6554; // Q15
static const int16_t kBackEta = 154; // Q8
// Minimum difference between the two models, Q5
static const int16_t kMinimumDifference[kNumChannels] = {544, 544, 576,
576, 576, 576};
// Upper limit of mean value for speech model, Q7
static const int16_t kMaximumSpeech[kNumChannels] = {11392, 11392, 11520,
11520, 11520, 11520};
// Minimum value for mean value
static const int16_t kMinimumMean[kNumGaussians] = {640, 768};
// Upper limit of mean value for noise model, Q7
static const int16_t kMaximumNoise[kNumChannels] = {9216, 9088, 8960,
8832, 8704, 8576};
// Start values for the Gaussian models, Q7
// Weights for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataWeights[kTableSize] = {34, 62, 72, 66, 53, 25,
94, 66, 56, 62, 75, 103};
// Weights for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataWeights[kTableSize] = {48, 82, 45, 87, 50, 47,
80, 46, 83, 41, 78, 81};
// Means for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataMeans[kTableSize] = {
6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362};
// Means for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataMeans[kTableSize] = {8306, 10085, 10078, 11823,
11843, 6309, 9473, 9571,
10879, 7581, 8180, 7483};
// Stds for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataStds[kTableSize] = {
378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455};
// Stds for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataStds[kTableSize] = {
555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850};
// Constants used in GmmProbability().
//
// Maximum number of counted speech (VAD = 1) frames in a row.
static const int16_t kMaxSpeechFrames = 6;
// Minimum standard deviation for both speech and noise.
static const int16_t kMinStd = 384;
// Constants in WebRtcVad_InitCore().
// Default aggressiveness mode.
static const short kDefaultMode = 0;
static const int kInitCheck = 42;
// Constants used in WebRtcVad_set_mode_core().
//
// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
//
// Mode 0, Quality.
static const int16_t kOverHangMax1Q[3] = {8, 4, 3};
static const int16_t kOverHangMax2Q[3] = {14, 7, 5};
static const int16_t kLocalThresholdQ[3] = {24, 21, 24};
static const int16_t kGlobalThresholdQ[3] = {57, 48, 57};
// Mode 1, Low bitrate.
static const int16_t kOverHangMax1LBR[3] = {8, 4, 3};
static const int16_t kOverHangMax2LBR[3] = {14, 7, 5};
static const int16_t kLocalThresholdLBR[3] = {37, 32, 37};
static const int16_t kGlobalThresholdLBR[3] = {100, 80, 100};
// Mode 2, Aggressive.
static const int16_t kOverHangMax1AGG[3] = {6, 3, 2};
static const int16_t kOverHangMax2AGG[3] = {9, 5, 3};
static const int16_t kLocalThresholdAGG[3] = {82, 78, 82};
static const int16_t kGlobalThresholdAGG[3] = {285, 260, 285};
// Mode 3, Very aggressive.
static const int16_t kOverHangMax1VAG[3] = {6, 3, 2};
static const int16_t kOverHangMax2VAG[3] = {9, 5, 3};
static const int16_t kLocalThresholdVAG[3] = {94, 94, 94};
static const int16_t kGlobalThresholdVAG[3] = {1100, 1050, 1100};
// Calculates the weighted average w.r.t. number of Gaussians. The `data` are
// updated with an `offset` before averaging.
//
// - data [i/o] : Data to average.
// - offset [i] : An offset added to `data`.
// - weights [i] : Weights used for averaging.
//
// returns : The weighted average.
static int32_t WeightedAverage(int16_t* data,
int16_t offset,
const int16_t* weights) {
int k;
int32_t weighted_average = 0;
for (k = 0; k < kNumGaussians; k++) {
data[k * kNumChannels] += offset;
weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
}
return weighted_average;
}
// An s16 x s32 -> s32 multiplication that's allowed to overflow. (It's still
// undefined behavior, so not a good idea; this just makes UBSan ignore the
// violation, so that our old code can continue to do what it's always been
// doing.)
static inline int32_t RTC_NO_SANITIZE("signed-integer-overflow")
OverflowingMulS16ByS32ToS32(int16_t a, int32_t b) {
return a * b;
}
// Calculates the probabilities for both speech and background noise using
// Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
// type of signal is most probable.
//
// - self [i/o] : Pointer to VAD instance
// - features [i] : Feature vector of length `kNumChannels`
// = log10(energy in frequency band)
// - total_power [i] : Total power in audio frame.
// - frame_length [i] : Number of input samples
//
// - returns : the VAD decision (0 - noise, 1 - speech).
static int16_t GmmProbability(VadInstT* self,
int16_t* features,
int16_t total_power,
size_t frame_length) {
int channel, k;
int16_t feature_minimum;
int16_t h0, h1;
int16_t log_likelihood_ratio;
int16_t vadflag = 0;
int16_t shifts_h0, shifts_h1;
int16_t tmp_s16, tmp1_s16, tmp2_s16;
int16_t diff;
int gaussian;
int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
int16_t delt, ndelt;
int16_t maxspe, maxmu;
int16_t deltaN[kTableSize], deltaS[kTableSize];
int16_t ngprvec[kTableSize] = {0}; // Conditional probability = 0.
int16_t sgprvec[kTableSize] = {0}; // Conditional probability = 0.
int32_t h0_test, h1_test;
int32_t tmp1_s32, tmp2_s32;
int32_t sum_log_likelihood_ratios = 0;
int32_t noise_global_mean, speech_global_mean;
int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
int16_t overhead1, overhead2, individualTest, totalTest;
// Set various thresholds based on frame lengths (80, 160 or 240 samples).
if (frame_length == 80) {
overhead1 = self->over_hang_max_1[0];
overhead2 = self->over_hang_max_2[0];
individualTest = self->individual[0];
totalTest = self->total[0];
} else if (frame_length == 160) {
overhead1 = self->over_hang_max_1[1];
overhead2 = self->over_hang_max_2[1];
individualTest = self->individual[1];
totalTest = self->total[1];
} else {
overhead1 = self->over_hang_max_1[2];
overhead2 = self->over_hang_max_2[2];
individualTest = self->individual[2];
totalTest = self->total[2];
}
if (total_power > kMinEnergy) {
// The signal power of current frame is large enough for processing. The
// processing consists of two parts:
// 1) Calculating the likelihood of speech and thereby a VAD decision.
// 2) Updating the underlying model, w.r.t., the decision made.
// The detection scheme is an LRT with hypothesis
// H0: Noise
// H1: Speech
//
// We combine a global LRT with local tests, for each frequency sub-band,
// here defined as `channel`.
for (channel = 0; channel < kNumChannels; channel++) {
// For each channel we model the probability with a GMM consisting of
// `kNumGaussians`, with different means and standard deviations depending
// on H0 or H1.
h0_test = 0;
h1_test = 0;
for (k = 0; k < kNumGaussians; k++) {
gaussian = channel + k * kNumChannels;
// Probability under H0, that is, probability of frame being noise.
// Value given in Q27 = Q7 * Q20.
tmp1_s32 = WebRtcVad_GaussianProbability(
features[channel], self->noise_means[gaussian],
self->noise_stds[gaussian], &deltaN[gaussian]);
noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
h0_test += noise_probability[k]; // Q27
// Probability under H1, that is, probability of frame being speech.
// Value given in Q27 = Q7 * Q20.
tmp1_s32 = WebRtcVad_GaussianProbability(
features[channel], self->speech_means[gaussian],
self->speech_stds[gaussian], &deltaS[gaussian]);
speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
h1_test += speech_probability[k]; // Q27
}
// Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
// Approximation:
// log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
// = log2(h1_test) - log2(h0_test)
// = log2(2^(31-shifts_h1)*(1+b1))
// - log2(2^(31-shifts_h0)*(1+b0))
// = shifts_h0 - shifts_h1
// + log2(1+b1) - log2(1+b0)
// ~= shifts_h0 - shifts_h1
//
// Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
// Further, b0 and b1 are independent and on the average the two terms
// cancel.
shifts_h0 = WebRtcSpl_NormW32(h0_test);
shifts_h1 = WebRtcSpl_NormW32(h1_test);
if (h0_test == 0) {
shifts_h0 = 31;
}
if (h1_test == 0) {
shifts_h1 = 31;
}
log_likelihood_ratio = shifts_h0 - shifts_h1;
// Update `sum_log_likelihood_ratios` with spectrum weighting. This is
// used for the global VAD decision.
sum_log_likelihood_ratios +=
(int32_t)(log_likelihood_ratio * kSpectrumWeight[channel]);
// Local VAD decision.
if ((log_likelihood_ratio * 4) > individualTest) {
vadflag = 1;
}
// TODO(bjornv): The conditional probabilities below are applied on the
// hard coded number of Gaussians set to two. Find a way to generalize.
// Calculate local noise probabilities used later when updating the GMM.
h0 = (int16_t)(h0_test >> 12); // Q15
if (h0 > 0) {
// High probability of noise. Assign conditional probabilities for each
// Gaussian in the GMM.
tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2; // Q29
ngprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h0); // Q14
ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
} else {
// Low noise probability. Assign conditional probability 1 to the first
// Gaussian and 0 to the rest (which is already set at initialization).
ngprvec[channel] = 16384;
}
// Calculate local speech probabilities used later when updating the GMM.
h1 = (int16_t)(h1_test >> 12); // Q15
if (h1 > 0) {
// High probability of speech. Assign conditional probabilities for each
// Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2; // Q29
sgprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h1); // Q14
sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
}
}
// Make a global VAD decision.
vadflag |= (sum_log_likelihood_ratios >= totalTest);
// Update the model parameters.
maxspe = 12800;
for (channel = 0; channel < kNumChannels; channel++) {
// Get minimum value in past which is used for long term correction in Q4.
feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);
// Compute the "global" mean, that is the sum of the two means weighted.
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
&kNoiseDataWeights[channel]);
tmp1_s16 = (int16_t)(noise_global_mean >> 6); // Q8
for (k = 0; k < kNumGaussians; k++) {
gaussian = channel + k * kNumChannels;
nmk = self->noise_means[gaussian];
smk = self->speech_means[gaussian];
nsk = self->noise_stds[gaussian];
ssk = self->speech_stds[gaussian];
// Update noise mean vector if the frame consists of noise only.
nmk2 = nmk;
if (!vadflag) {
// deltaN = (x-mu)/sigma^2
// ngprvec[k] = `noise_probability[k]` /
// (`noise_probability[0]` + `noise_probability[1]`)
// (Q14 * Q11 >> 11) = Q14.
delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
// Q7 + (Q14 * Q15 >> 22) = Q7.
nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
}
// Long term correction of the noise mean.
// Q8 - Q8 = Q8.
ndelt = (feature_minimum << 4) - tmp1_s16;
// Q7 + (Q8 * Q8) >> 9 = Q7.
nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);
// Control that the noise mean does not drift to much.
tmp_s16 = (int16_t)((k + 5) << 7);
if (nmk3 < tmp_s16) {
nmk3 = tmp_s16;
}
tmp_s16 = (int16_t)((72 + k - channel) << 7);
if (nmk3 > tmp_s16) {
nmk3 = tmp_s16;
}
self->noise_means[gaussian] = nmk3;
if (vadflag) {
// Update speech mean vector:
// `deltaS` = (x-mu)/sigma^2
// sgprvec[k] = `speech_probability[k]` /
// (`speech_probability[0]` + `speech_probability[1]`)
// (Q14 * Q11) >> 11 = Q14.
delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
// Q14 * Q15 >> 21 = Q8.
tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
// Q7 + (Q8 >> 1) = Q7. With rounding.
smk2 = smk + ((tmp_s16 + 1) >> 1);
// Control that the speech mean does not drift to much.
maxmu = maxspe + 640;
if (smk2 < kMinimumMean[k]) {
smk2 = kMinimumMean[k];
}
if (smk2 > maxmu) {
smk2 = maxmu;
}
self->speech_means[gaussian] = smk2; // Q7.
// (Q7 >> 3) = Q4. With rounding.
tmp_s16 = ((smk + 4) >> 3);
tmp_s16 = features[channel] - tmp_s16; // Q4
// (Q11 * Q4 >> 3) = Q12.
tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
tmp2_s32 = tmp1_s32 - 4096;
tmp_s16 = sgprvec[gaussian] >> 2;
// (Q14 >> 2) * Q12 = Q24.
tmp1_s32 = tmp_s16 * tmp2_s32;
tmp2_s32 = tmp1_s32 >> 4; // Q20
// 0.1 * Q20 / Q7 = Q13.
if (tmp2_s32 > 0) {
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
} else {
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
tmp_s16 = -tmp_s16;
}
// Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
// Note that division by 4 equals shift by 2, hence,
// (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
tmp_s16 += 128; // Rounding.
ssk += (tmp_s16 >> 8);
if (ssk < kMinStd) {
ssk = kMinStd;
}
self->speech_stds[gaussian] = ssk;
} else {
// Update GMM variance vectors.
// deltaN * (features[channel] - nmk) - 1
// Q4 - (Q7 >> 3) = Q4.
tmp_s16 = features[channel] - (nmk >> 3);
// (Q11 * Q4 >> 3) = Q12.
tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
tmp1_s32 -= 4096;
// (Q14 >> 2) * Q12 = Q24.
tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
tmp2_s32 = OverflowingMulS16ByS32ToS32(tmp_s16, tmp1_s32);
// Q20 * approx 0.001 (2^-10=0.0009766), hence,
// (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
tmp1_s32 = tmp2_s32 >> 14;
// Q20 / Q7 = Q13.
if (tmp1_s32 > 0) {
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, nsk);
} else {
tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
tmp_s16 = -tmp_s16;
}
tmp_s16 += 32; // Rounding
nsk += tmp_s16 >> 6; // Q13 >> 6 = Q7.
if (nsk < kMinStd) {
nsk = kMinStd;
}
self->noise_stds[gaussian] = nsk;
}
}
// Separate models if they are too close.
// `noise_global_mean` in Q14 (= Q7 * Q7).
noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
&kNoiseDataWeights[channel]);
// `speech_global_mean` in Q14 (= Q7 * Q7).
speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
&kSpeechDataWeights[channel]);
// `diff` = "global" speech mean - "global" noise mean.
// (Q14 >> 9) - (Q14 >> 9) = Q5.
diff = (int16_t)(speech_global_mean >> 9) -
(int16_t)(noise_global_mean >> 9);
if (diff < kMinimumDifference[channel]) {
tmp_s16 = kMinimumDifference[channel] - diff;
// `tmp1_s16` = ~0.8 * (kMinimumDifference - diff) in Q7.
// `tmp2_s16` = ~0.2 * (kMinimumDifference - diff) in Q7.
tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);
// Move Gaussian means for speech model by `tmp1_s16` and update
// `speech_global_mean`. Note that `self->speech_means[channel]` is
// changed after the call.
speech_global_mean =
WeightedAverage(&self->speech_means[channel], tmp1_s16,
&kSpeechDataWeights[channel]);
// Move Gaussian means for noise model by -`tmp2_s16` and update
// `noise_global_mean`. Note that `self->noise_means[channel]` is
// changed after the call.
noise_global_mean =
WeightedAverage(&self->noise_means[channel], -tmp2_s16,
&kNoiseDataWeights[channel]);
}
// Control that the speech & noise means do not drift to much.
maxspe = kMaximumSpeech[channel];
tmp2_s16 = (int16_t)(speech_global_mean >> 7);
if (tmp2_s16 > maxspe) {
// Upper limit of speech model.
tmp2_s16 -= maxspe;
for (k = 0; k < kNumGaussians; k++) {
self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
}
}
tmp2_s16 = (int16_t)(noise_global_mean >> 7);
if (tmp2_s16 > kMaximumNoise[channel]) {
tmp2_s16 -= kMaximumNoise[channel];
for (k = 0; k < kNumGaussians; k++) {
self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
}
}
}
self->frame_counter++;
}
// Smooth with respect to transition hysteresis.
if (!vadflag) {
if (self->over_hang > 0) {
vadflag = 2 + self->over_hang;
self->over_hang--;
}
self->num_of_speech = 0;
} else {
self->num_of_speech++;
if (self->num_of_speech > kMaxSpeechFrames) {
self->num_of_speech = kMaxSpeechFrames;
self->over_hang = overhead2;
} else {
self->over_hang = overhead1;
}
}
return vadflag;
}
// Initialize the VAD. Set aggressiveness mode to default value.
int WebRtcVad_InitCore(VadInstT* self) {
int i;
if (self == NULL) {
return -1;
}
// Initialization of general struct variables.
self->vad = 1; // Speech active (=1).
self->frame_counter = 0;
self->over_hang = 0;
self->num_of_speech = 0;
// Initialization of downsampling filter state.
memset(self->downsampling_filter_states, 0,
sizeof(self->downsampling_filter_states));
// Initialization of 48 to 8 kHz downsampling.
WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);
// Read initial PDF parameters.
for (i = 0; i < kTableSize; i++) {
self->noise_means[i] = kNoiseDataMeans[i];
self->speech_means[i] = kSpeechDataMeans[i];
self->noise_stds[i] = kNoiseDataStds[i];
self->speech_stds[i] = kSpeechDataStds[i];
}
// Initialize Index and Minimum value vectors.
for (i = 0; i < 16 * kNumChannels; i++) {
self->low_value_vector[i] = 10000;
self->index_vector[i] = 0;
}
// Initialize splitting filter states.
memset(self->upper_state, 0, sizeof(self->upper_state));
memset(self->lower_state, 0, sizeof(self->lower_state));
// Initialize high pass filter states.
memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));
// Initialize mean value memory, for WebRtcVad_FindMinimum().
for (i = 0; i < kNumChannels; i++) {
self->mean_value[i] = 1600;
}
// Set aggressiveness mode to default (=`kDefaultMode`).
if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
return -1;
}
self->init_flag = kInitCheck;
return 0;
}
// Set aggressiveness mode
int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
int return_value = 0;
switch (mode) {
case 0:
// Quality mode.
memcpy(self->over_hang_max_1, kOverHangMax1Q,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2Q,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdQ, sizeof(self->individual));
memcpy(self->total, kGlobalThresholdQ, sizeof(self->total));
break;
case 1:
// Low bitrate mode.
memcpy(self->over_hang_max_1, kOverHangMax1LBR,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2LBR,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdLBR, sizeof(self->individual));
memcpy(self->total, kGlobalThresholdLBR, sizeof(self->total));
break;
case 2:
// Aggressive mode.
memcpy(self->over_hang_max_1, kOverHangMax1AGG,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2AGG,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdAGG, sizeof(self->individual));
memcpy(self->total, kGlobalThresholdAGG, sizeof(self->total));
break;
case 3:
// Very aggressive mode.
memcpy(self->over_hang_max_1, kOverHangMax1VAG,
sizeof(self->over_hang_max_1));
memcpy(self->over_hang_max_2, kOverHangMax2VAG,
sizeof(self->over_hang_max_2));
memcpy(self->individual, kLocalThresholdVAG, sizeof(self->individual));
memcpy(self->total, kGlobalThresholdVAG, sizeof(self->total));
break;
default:
return_value = -1;
break;
}
return return_value;
}
// Calculate VAD decision by first extracting feature values and then calculate
// probability for both speech and background noise.
int WebRtcVad_CalcVad48khz(VadInstT* inst,
const int16_t* speech_frame,
size_t frame_length) {
int vad;
size_t i;
int16_t speech_nb[240]; // 30 ms in 8 kHz.
// `tmp_mem` is a temporary memory used by resample function, length is
// frame length in 10 ms (480 samples) + 256 extra.
int32_t tmp_mem[480 + 256] = {0};
const size_t kFrameLen10ms48khz = 480;
const size_t kFrameLen10ms8khz = 80;
size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;
for (i = 0; i < num_10ms_frames; i++) {
WebRtcSpl_Resample48khzTo8khz(speech_frame,
&speech_nb[i * kFrameLen10ms8khz],
&inst->state_48_to_8, tmp_mem);
}
// Do VAD on an 8 kHz signal
vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);
return vad;
}
int WebRtcVad_CalcVad32khz(VadInstT* inst,
const int16_t* speech_frame,
size_t frame_length) {
size_t len;
int vad;
int16_t speechWB[480]; // Downsampled speech frame: 960 samples (30ms in SWB)
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Downsample signal 32->16->8 before doing VAD
WebRtcVad_Downsampling(speech_frame, speechWB,
&(inst->downsampling_filter_states[2]), frame_length);
len = frame_length / 2;
WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states,
len);
len /= 2;
// Do VAD on an 8 kHz signal
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
int WebRtcVad_CalcVad16khz(VadInstT* inst,
const int16_t* speech_frame,
size_t frame_length) {
size_t len;
int vad;
int16_t speechNB[240]; // Downsampled speech frame: 480 samples (30ms in WB)
// Wideband: Downsample signal before doing VAD
WebRtcVad_Downsampling(speech_frame, speechNB,
inst->downsampling_filter_states, frame_length);
len = frame_length / 2;
vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);
return vad;
}
int WebRtcVad_CalcVad8khz(VadInstT* inst,
const int16_t* speech_frame,
size_t frame_length) {
int16_t feature_vector[kNumChannels], total_power;
// Get power in the bands
total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
feature_vector);
// Make a VAD
inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);
return inst->vad;
}
|