File: vad_core.c

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (677 lines) | stat: -rw-r--r-- 26,200 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "common_audio/vad/vad_core.h"

#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/vad/vad_filterbank.h"
#include "common_audio/vad/vad_gmm.h"
#include "common_audio/vad/vad_sp.h"
#include "rtc_base/sanitizer.h"

// Spectrum Weighting
static const int16_t kSpectrumWeight[kNumChannels] = {6, 8, 10, 12, 14, 16};
static const int16_t kNoiseUpdateConst = 655;    // Q15
static const int16_t kSpeechUpdateConst = 6554;  // Q15
static const int16_t kBackEta = 154;             // Q8
// Minimum difference between the two models, Q5
static const int16_t kMinimumDifference[kNumChannels] = {544, 544, 576,
                                                         576, 576, 576};
// Upper limit of mean value for speech model, Q7
static const int16_t kMaximumSpeech[kNumChannels] = {11392, 11392, 11520,
                                                     11520, 11520, 11520};
// Minimum value for mean value
static const int16_t kMinimumMean[kNumGaussians] = {640, 768};
// Upper limit of mean value for noise model, Q7
static const int16_t kMaximumNoise[kNumChannels] = {9216, 9088, 8960,
                                                    8832, 8704, 8576};
// Start values for the Gaussian models, Q7
// Weights for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataWeights[kTableSize] = {34, 62, 72, 66, 53, 25,
                                                      94, 66, 56, 62, 75, 103};
// Weights for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataWeights[kTableSize] = {48, 82, 45, 87, 50, 47,
                                                       80, 46, 83, 41, 78, 81};
// Means for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataMeans[kTableSize] = {
    6738, 4892, 7065, 6715, 6771, 3369, 7646, 3863, 7820, 7266, 5020, 4362};
// Means for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataMeans[kTableSize] = {8306,  10085, 10078, 11823,
                                                     11843, 6309,  9473,  9571,
                                                     10879, 7581,  8180,  7483};
// Stds for the two Gaussians for the six channels (noise)
static const int16_t kNoiseDataStds[kTableSize] = {
    378, 1064, 493, 582, 688, 593, 474, 697, 475, 688, 421, 455};
// Stds for the two Gaussians for the six channels (speech)
static const int16_t kSpeechDataStds[kTableSize] = {
    555, 505, 567, 524, 585, 1231, 509, 828, 492, 1540, 1079, 850};

// Constants used in GmmProbability().
//
// Maximum number of counted speech (VAD = 1) frames in a row.
static const int16_t kMaxSpeechFrames = 6;
// Minimum standard deviation for both speech and noise.
static const int16_t kMinStd = 384;

// Constants in WebRtcVad_InitCore().
// Default aggressiveness mode.
static const short kDefaultMode = 0;
static const int kInitCheck = 42;

// Constants used in WebRtcVad_set_mode_core().
//
// Thresholds for different frame lengths (10 ms, 20 ms and 30 ms).
//
// Mode 0, Quality.
static const int16_t kOverHangMax1Q[3] = {8, 4, 3};
static const int16_t kOverHangMax2Q[3] = {14, 7, 5};
static const int16_t kLocalThresholdQ[3] = {24, 21, 24};
static const int16_t kGlobalThresholdQ[3] = {57, 48, 57};
// Mode 1, Low bitrate.
static const int16_t kOverHangMax1LBR[3] = {8, 4, 3};
static const int16_t kOverHangMax2LBR[3] = {14, 7, 5};
static const int16_t kLocalThresholdLBR[3] = {37, 32, 37};
static const int16_t kGlobalThresholdLBR[3] = {100, 80, 100};
// Mode 2, Aggressive.
static const int16_t kOverHangMax1AGG[3] = {6, 3, 2};
static const int16_t kOverHangMax2AGG[3] = {9, 5, 3};
static const int16_t kLocalThresholdAGG[3] = {82, 78, 82};
static const int16_t kGlobalThresholdAGG[3] = {285, 260, 285};
// Mode 3, Very aggressive.
static const int16_t kOverHangMax1VAG[3] = {6, 3, 2};
static const int16_t kOverHangMax2VAG[3] = {9, 5, 3};
static const int16_t kLocalThresholdVAG[3] = {94, 94, 94};
static const int16_t kGlobalThresholdVAG[3] = {1100, 1050, 1100};

// Calculates the weighted average w.r.t. number of Gaussians. The `data` are
// updated with an `offset` before averaging.
//
// - data     [i/o] : Data to average.
// - offset   [i]   : An offset added to `data`.
// - weights  [i]   : Weights used for averaging.
//
// returns          : The weighted average.
static int32_t WeightedAverage(int16_t* data,
                               int16_t offset,
                               const int16_t* weights) {
  int k;
  int32_t weighted_average = 0;

  for (k = 0; k < kNumGaussians; k++) {
    data[k * kNumChannels] += offset;
    weighted_average += data[k * kNumChannels] * weights[k * kNumChannels];
  }
  return weighted_average;
}

// An s16 x s32 -> s32 multiplication that's allowed to overflow. (It's still
// undefined behavior, so not a good idea; this just makes UBSan ignore the
// violation, so that our old code can continue to do what it's always been
// doing.)
static inline int32_t RTC_NO_SANITIZE("signed-integer-overflow")
    OverflowingMulS16ByS32ToS32(int16_t a, int32_t b) {
  return a * b;
}

// Calculates the probabilities for both speech and background noise using
// Gaussian Mixture Models (GMM). A hypothesis-test is performed to decide which
// type of signal is most probable.
//
// - self           [i/o] : Pointer to VAD instance
// - features       [i]   : Feature vector of length `kNumChannels`
//                          = log10(energy in frequency band)
// - total_power    [i]   : Total power in audio frame.
// - frame_length   [i]   : Number of input samples
//
// - returns              : the VAD decision (0 - noise, 1 - speech).
static int16_t GmmProbability(VadInstT* self,
                              int16_t* features,
                              int16_t total_power,
                              size_t frame_length) {
  int channel, k;
  int16_t feature_minimum;
  int16_t h0, h1;
  int16_t log_likelihood_ratio;
  int16_t vadflag = 0;
  int16_t shifts_h0, shifts_h1;
  int16_t tmp_s16, tmp1_s16, tmp2_s16;
  int16_t diff;
  int gaussian;
  int16_t nmk, nmk2, nmk3, smk, smk2, nsk, ssk;
  int16_t delt, ndelt;
  int16_t maxspe, maxmu;
  int16_t deltaN[kTableSize], deltaS[kTableSize];
  int16_t ngprvec[kTableSize] = {0};  // Conditional probability = 0.
  int16_t sgprvec[kTableSize] = {0};  // Conditional probability = 0.
  int32_t h0_test, h1_test;
  int32_t tmp1_s32, tmp2_s32;
  int32_t sum_log_likelihood_ratios = 0;
  int32_t noise_global_mean, speech_global_mean;
  int32_t noise_probability[kNumGaussians], speech_probability[kNumGaussians];
  int16_t overhead1, overhead2, individualTest, totalTest;

  // Set various thresholds based on frame lengths (80, 160 or 240 samples).
  if (frame_length == 80) {
    overhead1 = self->over_hang_max_1[0];
    overhead2 = self->over_hang_max_2[0];
    individualTest = self->individual[0];
    totalTest = self->total[0];
  } else if (frame_length == 160) {
    overhead1 = self->over_hang_max_1[1];
    overhead2 = self->over_hang_max_2[1];
    individualTest = self->individual[1];
    totalTest = self->total[1];
  } else {
    overhead1 = self->over_hang_max_1[2];
    overhead2 = self->over_hang_max_2[2];
    individualTest = self->individual[2];
    totalTest = self->total[2];
  }

  if (total_power > kMinEnergy) {
    // The signal power of current frame is large enough for processing. The
    // processing consists of two parts:
    // 1) Calculating the likelihood of speech and thereby a VAD decision.
    // 2) Updating the underlying model, w.r.t., the decision made.

    // The detection scheme is an LRT with hypothesis
    // H0: Noise
    // H1: Speech
    //
    // We combine a global LRT with local tests, for each frequency sub-band,
    // here defined as `channel`.
    for (channel = 0; channel < kNumChannels; channel++) {
      // For each channel we model the probability with a GMM consisting of
      // `kNumGaussians`, with different means and standard deviations depending
      // on H0 or H1.
      h0_test = 0;
      h1_test = 0;
      for (k = 0; k < kNumGaussians; k++) {
        gaussian = channel + k * kNumChannels;
        // Probability under H0, that is, probability of frame being noise.
        // Value given in Q27 = Q7 * Q20.
        tmp1_s32 = WebRtcVad_GaussianProbability(
            features[channel], self->noise_means[gaussian],
            self->noise_stds[gaussian], &deltaN[gaussian]);
        noise_probability[k] = kNoiseDataWeights[gaussian] * tmp1_s32;
        h0_test += noise_probability[k];  // Q27

        // Probability under H1, that is, probability of frame being speech.
        // Value given in Q27 = Q7 * Q20.
        tmp1_s32 = WebRtcVad_GaussianProbability(
            features[channel], self->speech_means[gaussian],
            self->speech_stds[gaussian], &deltaS[gaussian]);
        speech_probability[k] = kSpeechDataWeights[gaussian] * tmp1_s32;
        h1_test += speech_probability[k];  // Q27
      }

      // Calculate the log likelihood ratio: log2(Pr{X|H1} / Pr{X|H1}).
      // Approximation:
      // log2(Pr{X|H1} / Pr{X|H1}) = log2(Pr{X|H1}*2^Q) - log2(Pr{X|H1}*2^Q)
      //                           = log2(h1_test) - log2(h0_test)
      //                           = log2(2^(31-shifts_h1)*(1+b1))
      //                             - log2(2^(31-shifts_h0)*(1+b0))
      //                           = shifts_h0 - shifts_h1
      //                             + log2(1+b1) - log2(1+b0)
      //                          ~= shifts_h0 - shifts_h1
      //
      // Note that b0 and b1 are values less than 1, hence, 0 <= log2(1+b0) < 1.
      // Further, b0 and b1 are independent and on the average the two terms
      // cancel.
      shifts_h0 = WebRtcSpl_NormW32(h0_test);
      shifts_h1 = WebRtcSpl_NormW32(h1_test);
      if (h0_test == 0) {
        shifts_h0 = 31;
      }
      if (h1_test == 0) {
        shifts_h1 = 31;
      }
      log_likelihood_ratio = shifts_h0 - shifts_h1;

      // Update `sum_log_likelihood_ratios` with spectrum weighting. This is
      // used for the global VAD decision.
      sum_log_likelihood_ratios +=
          (int32_t)(log_likelihood_ratio * kSpectrumWeight[channel]);

      // Local VAD decision.
      if ((log_likelihood_ratio * 4) > individualTest) {
        vadflag = 1;
      }

      // TODO(bjornv): The conditional probabilities below are applied on the
      // hard coded number of Gaussians set to two. Find a way to generalize.
      // Calculate local noise probabilities used later when updating the GMM.
      h0 = (int16_t)(h0_test >> 12);  // Q15
      if (h0 > 0) {
        // High probability of noise. Assign conditional probabilities for each
        // Gaussian in the GMM.
        tmp1_s32 = (noise_probability[0] & 0xFFFFF000) << 2;            // Q29
        ngprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h0);  // Q14
        ngprvec[channel + kNumChannels] = 16384 - ngprvec[channel];
      } else {
        // Low noise probability. Assign conditional probability 1 to the first
        // Gaussian and 0 to the rest (which is already set at initialization).
        ngprvec[channel] = 16384;
      }

      // Calculate local speech probabilities used later when updating the GMM.
      h1 = (int16_t)(h1_test >> 12);  // Q15
      if (h1 > 0) {
        // High probability of speech. Assign conditional probabilities for each
        // Gaussian in the GMM. Otherwise use the initialized values, i.e., 0.
        tmp1_s32 = (speech_probability[0] & 0xFFFFF000) << 2;           // Q29
        sgprvec[channel] = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, h1);  // Q14
        sgprvec[channel + kNumChannels] = 16384 - sgprvec[channel];
      }
    }

    // Make a global VAD decision.
    vadflag |= (sum_log_likelihood_ratios >= totalTest);

    // Update the model parameters.
    maxspe = 12800;
    for (channel = 0; channel < kNumChannels; channel++) {
      // Get minimum value in past which is used for long term correction in Q4.
      feature_minimum = WebRtcVad_FindMinimum(self, features[channel], channel);

      // Compute the "global" mean, that is the sum of the two means weighted.
      noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
                                          &kNoiseDataWeights[channel]);
      tmp1_s16 = (int16_t)(noise_global_mean >> 6);  // Q8

      for (k = 0; k < kNumGaussians; k++) {
        gaussian = channel + k * kNumChannels;

        nmk = self->noise_means[gaussian];
        smk = self->speech_means[gaussian];
        nsk = self->noise_stds[gaussian];
        ssk = self->speech_stds[gaussian];

        // Update noise mean vector if the frame consists of noise only.
        nmk2 = nmk;
        if (!vadflag) {
          // deltaN = (x-mu)/sigma^2
          // ngprvec[k] = `noise_probability[k]` /
          //   (`noise_probability[0]` + `noise_probability[1]`)

          // (Q14 * Q11 >> 11) = Q14.
          delt = (int16_t)((ngprvec[gaussian] * deltaN[gaussian]) >> 11);
          // Q7 + (Q14 * Q15 >> 22) = Q7.
          nmk2 = nmk + (int16_t)((delt * kNoiseUpdateConst) >> 22);
        }

        // Long term correction of the noise mean.
        // Q8 - Q8 = Q8.
        ndelt = (feature_minimum << 4) - tmp1_s16;
        // Q7 + (Q8 * Q8) >> 9 = Q7.
        nmk3 = nmk2 + (int16_t)((ndelt * kBackEta) >> 9);

        // Control that the noise mean does not drift to much.
        tmp_s16 = (int16_t)((k + 5) << 7);
        if (nmk3 < tmp_s16) {
          nmk3 = tmp_s16;
        }
        tmp_s16 = (int16_t)((72 + k - channel) << 7);
        if (nmk3 > tmp_s16) {
          nmk3 = tmp_s16;
        }
        self->noise_means[gaussian] = nmk3;

        if (vadflag) {
          // Update speech mean vector:
          // `deltaS` = (x-mu)/sigma^2
          // sgprvec[k] = `speech_probability[k]` /
          //   (`speech_probability[0]` + `speech_probability[1]`)

          // (Q14 * Q11) >> 11 = Q14.
          delt = (int16_t)((sgprvec[gaussian] * deltaS[gaussian]) >> 11);
          // Q14 * Q15 >> 21 = Q8.
          tmp_s16 = (int16_t)((delt * kSpeechUpdateConst) >> 21);
          // Q7 + (Q8 >> 1) = Q7. With rounding.
          smk2 = smk + ((tmp_s16 + 1) >> 1);

          // Control that the speech mean does not drift to much.
          maxmu = maxspe + 640;
          if (smk2 < kMinimumMean[k]) {
            smk2 = kMinimumMean[k];
          }
          if (smk2 > maxmu) {
            smk2 = maxmu;
          }
          self->speech_means[gaussian] = smk2;  // Q7.

          // (Q7 >> 3) = Q4. With rounding.
          tmp_s16 = ((smk + 4) >> 3);

          tmp_s16 = features[channel] - tmp_s16;  // Q4
          // (Q11 * Q4 >> 3) = Q12.
          tmp1_s32 = (deltaS[gaussian] * tmp_s16) >> 3;
          tmp2_s32 = tmp1_s32 - 4096;
          tmp_s16 = sgprvec[gaussian] >> 2;
          // (Q14 >> 2) * Q12 = Q24.
          tmp1_s32 = tmp_s16 * tmp2_s32;

          tmp2_s32 = tmp1_s32 >> 4;  // Q20

          // 0.1 * Q20 / Q7 = Q13.
          if (tmp2_s32 > 0) {
            tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp2_s32, ssk * 10);
          } else {
            tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp2_s32, ssk * 10);
            tmp_s16 = -tmp_s16;
          }
          // Divide by 4 giving an update factor of 0.025 (= 0.1 / 4).
          // Note that division by 4 equals shift by 2, hence,
          // (Q13 >> 8) = (Q13 >> 6) / 4 = Q7.
          tmp_s16 += 128;  // Rounding.
          ssk += (tmp_s16 >> 8);
          if (ssk < kMinStd) {
            ssk = kMinStd;
          }
          self->speech_stds[gaussian] = ssk;
        } else {
          // Update GMM variance vectors.
          // deltaN * (features[channel] - nmk) - 1
          // Q4 - (Q7 >> 3) = Q4.
          tmp_s16 = features[channel] - (nmk >> 3);
          // (Q11 * Q4 >> 3) = Q12.
          tmp1_s32 = (deltaN[gaussian] * tmp_s16) >> 3;
          tmp1_s32 -= 4096;

          // (Q14 >> 2) * Q12 = Q24.
          tmp_s16 = (ngprvec[gaussian] + 2) >> 2;
          tmp2_s32 = OverflowingMulS16ByS32ToS32(tmp_s16, tmp1_s32);
          // Q20  * approx 0.001 (2^-10=0.0009766), hence,
          // (Q24 >> 14) = (Q24 >> 4) / 2^10 = Q20.
          tmp1_s32 = tmp2_s32 >> 14;

          // Q20 / Q7 = Q13.
          if (tmp1_s32 > 0) {
            tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(tmp1_s32, nsk);
          } else {
            tmp_s16 = (int16_t)WebRtcSpl_DivW32W16(-tmp1_s32, nsk);
            tmp_s16 = -tmp_s16;
          }
          tmp_s16 += 32;        // Rounding
          nsk += tmp_s16 >> 6;  // Q13 >> 6 = Q7.
          if (nsk < kMinStd) {
            nsk = kMinStd;
          }
          self->noise_stds[gaussian] = nsk;
        }
      }

      // Separate models if they are too close.
      // `noise_global_mean` in Q14 (= Q7 * Q7).
      noise_global_mean = WeightedAverage(&self->noise_means[channel], 0,
                                          &kNoiseDataWeights[channel]);

      // `speech_global_mean` in Q14 (= Q7 * Q7).
      speech_global_mean = WeightedAverage(&self->speech_means[channel], 0,
                                           &kSpeechDataWeights[channel]);

      // `diff` = "global" speech mean - "global" noise mean.
      // (Q14 >> 9) - (Q14 >> 9) = Q5.
      diff = (int16_t)(speech_global_mean >> 9) -
             (int16_t)(noise_global_mean >> 9);
      if (diff < kMinimumDifference[channel]) {
        tmp_s16 = kMinimumDifference[channel] - diff;

        // `tmp1_s16` = ~0.8 * (kMinimumDifference - diff) in Q7.
        // `tmp2_s16` = ~0.2 * (kMinimumDifference - diff) in Q7.
        tmp1_s16 = (int16_t)((13 * tmp_s16) >> 2);
        tmp2_s16 = (int16_t)((3 * tmp_s16) >> 2);

        // Move Gaussian means for speech model by `tmp1_s16` and update
        // `speech_global_mean`. Note that `self->speech_means[channel]` is
        // changed after the call.
        speech_global_mean =
            WeightedAverage(&self->speech_means[channel], tmp1_s16,
                            &kSpeechDataWeights[channel]);

        // Move Gaussian means for noise model by -`tmp2_s16` and update
        // `noise_global_mean`. Note that `self->noise_means[channel]` is
        // changed after the call.
        noise_global_mean =
            WeightedAverage(&self->noise_means[channel], -tmp2_s16,
                            &kNoiseDataWeights[channel]);
      }

      // Control that the speech & noise means do not drift to much.
      maxspe = kMaximumSpeech[channel];
      tmp2_s16 = (int16_t)(speech_global_mean >> 7);
      if (tmp2_s16 > maxspe) {
        // Upper limit of speech model.
        tmp2_s16 -= maxspe;

        for (k = 0; k < kNumGaussians; k++) {
          self->speech_means[channel + k * kNumChannels] -= tmp2_s16;
        }
      }

      tmp2_s16 = (int16_t)(noise_global_mean >> 7);
      if (tmp2_s16 > kMaximumNoise[channel]) {
        tmp2_s16 -= kMaximumNoise[channel];

        for (k = 0; k < kNumGaussians; k++) {
          self->noise_means[channel + k * kNumChannels] -= tmp2_s16;
        }
      }
    }
    self->frame_counter++;
  }

  // Smooth with respect to transition hysteresis.
  if (!vadflag) {
    if (self->over_hang > 0) {
      vadflag = 2 + self->over_hang;
      self->over_hang--;
    }
    self->num_of_speech = 0;
  } else {
    self->num_of_speech++;
    if (self->num_of_speech > kMaxSpeechFrames) {
      self->num_of_speech = kMaxSpeechFrames;
      self->over_hang = overhead2;
    } else {
      self->over_hang = overhead1;
    }
  }
  return vadflag;
}

// Initialize the VAD. Set aggressiveness mode to default value.
int WebRtcVad_InitCore(VadInstT* self) {
  int i;

  if (self == NULL) {
    return -1;
  }

  // Initialization of general struct variables.
  self->vad = 1;  // Speech active (=1).
  self->frame_counter = 0;
  self->over_hang = 0;
  self->num_of_speech = 0;

  // Initialization of downsampling filter state.
  memset(self->downsampling_filter_states, 0,
         sizeof(self->downsampling_filter_states));

  // Initialization of 48 to 8 kHz downsampling.
  WebRtcSpl_ResetResample48khzTo8khz(&self->state_48_to_8);

  // Read initial PDF parameters.
  for (i = 0; i < kTableSize; i++) {
    self->noise_means[i] = kNoiseDataMeans[i];
    self->speech_means[i] = kSpeechDataMeans[i];
    self->noise_stds[i] = kNoiseDataStds[i];
    self->speech_stds[i] = kSpeechDataStds[i];
  }

  // Initialize Index and Minimum value vectors.
  for (i = 0; i < 16 * kNumChannels; i++) {
    self->low_value_vector[i] = 10000;
    self->index_vector[i] = 0;
  }

  // Initialize splitting filter states.
  memset(self->upper_state, 0, sizeof(self->upper_state));
  memset(self->lower_state, 0, sizeof(self->lower_state));

  // Initialize high pass filter states.
  memset(self->hp_filter_state, 0, sizeof(self->hp_filter_state));

  // Initialize mean value memory, for WebRtcVad_FindMinimum().
  for (i = 0; i < kNumChannels; i++) {
    self->mean_value[i] = 1600;
  }

  // Set aggressiveness mode to default (=`kDefaultMode`).
  if (WebRtcVad_set_mode_core(self, kDefaultMode) != 0) {
    return -1;
  }

  self->init_flag = kInitCheck;

  return 0;
}

// Set aggressiveness mode
int WebRtcVad_set_mode_core(VadInstT* self, int mode) {
  int return_value = 0;

  switch (mode) {
    case 0:
      // Quality mode.
      memcpy(self->over_hang_max_1, kOverHangMax1Q,
             sizeof(self->over_hang_max_1));
      memcpy(self->over_hang_max_2, kOverHangMax2Q,
             sizeof(self->over_hang_max_2));
      memcpy(self->individual, kLocalThresholdQ, sizeof(self->individual));
      memcpy(self->total, kGlobalThresholdQ, sizeof(self->total));
      break;
    case 1:
      // Low bitrate mode.
      memcpy(self->over_hang_max_1, kOverHangMax1LBR,
             sizeof(self->over_hang_max_1));
      memcpy(self->over_hang_max_2, kOverHangMax2LBR,
             sizeof(self->over_hang_max_2));
      memcpy(self->individual, kLocalThresholdLBR, sizeof(self->individual));
      memcpy(self->total, kGlobalThresholdLBR, sizeof(self->total));
      break;
    case 2:
      // Aggressive mode.
      memcpy(self->over_hang_max_1, kOverHangMax1AGG,
             sizeof(self->over_hang_max_1));
      memcpy(self->over_hang_max_2, kOverHangMax2AGG,
             sizeof(self->over_hang_max_2));
      memcpy(self->individual, kLocalThresholdAGG, sizeof(self->individual));
      memcpy(self->total, kGlobalThresholdAGG, sizeof(self->total));
      break;
    case 3:
      // Very aggressive mode.
      memcpy(self->over_hang_max_1, kOverHangMax1VAG,
             sizeof(self->over_hang_max_1));
      memcpy(self->over_hang_max_2, kOverHangMax2VAG,
             sizeof(self->over_hang_max_2));
      memcpy(self->individual, kLocalThresholdVAG, sizeof(self->individual));
      memcpy(self->total, kGlobalThresholdVAG, sizeof(self->total));
      break;
    default:
      return_value = -1;
      break;
  }

  return return_value;
}

// Calculate VAD decision by first extracting feature values and then calculate
// probability for both speech and background noise.

int WebRtcVad_CalcVad48khz(VadInstT* inst,
                           const int16_t* speech_frame,
                           size_t frame_length) {
  int vad;
  size_t i;
  int16_t speech_nb[240];  // 30 ms in 8 kHz.
  // `tmp_mem` is a temporary memory used by resample function, length is
  // frame length in 10 ms (480 samples) + 256 extra.
  int32_t tmp_mem[480 + 256] = {0};
  const size_t kFrameLen10ms48khz = 480;
  const size_t kFrameLen10ms8khz = 80;
  size_t num_10ms_frames = frame_length / kFrameLen10ms48khz;

  for (i = 0; i < num_10ms_frames; i++) {
    WebRtcSpl_Resample48khzTo8khz(speech_frame,
                                  &speech_nb[i * kFrameLen10ms8khz],
                                  &inst->state_48_to_8, tmp_mem);
  }

  // Do VAD on an 8 kHz signal
  vad = WebRtcVad_CalcVad8khz(inst, speech_nb, frame_length / 6);

  return vad;
}

int WebRtcVad_CalcVad32khz(VadInstT* inst,
                           const int16_t* speech_frame,
                           size_t frame_length) {
  size_t len;
  int vad;
  int16_t speechWB[480];  // Downsampled speech frame: 960 samples (30ms in SWB)
  int16_t speechNB[240];  // Downsampled speech frame: 480 samples (30ms in WB)

  // Downsample signal 32->16->8 before doing VAD
  WebRtcVad_Downsampling(speech_frame, speechWB,
                         &(inst->downsampling_filter_states[2]), frame_length);
  len = frame_length / 2;

  WebRtcVad_Downsampling(speechWB, speechNB, inst->downsampling_filter_states,
                         len);
  len /= 2;

  // Do VAD on an 8 kHz signal
  vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);

  return vad;
}

int WebRtcVad_CalcVad16khz(VadInstT* inst,
                           const int16_t* speech_frame,
                           size_t frame_length) {
  size_t len;
  int vad;
  int16_t speechNB[240];  // Downsampled speech frame: 480 samples (30ms in WB)

  // Wideband: Downsample signal before doing VAD
  WebRtcVad_Downsampling(speech_frame, speechNB,
                         inst->downsampling_filter_states, frame_length);

  len = frame_length / 2;
  vad = WebRtcVad_CalcVad8khz(inst, speechNB, len);

  return vad;
}

int WebRtcVad_CalcVad8khz(VadInstT* inst,
                          const int16_t* speech_frame,
                          size_t frame_length) {
  int16_t feature_vector[kNumChannels], total_power;

  // Get power in the bands
  total_power = WebRtcVad_CalculateFeatures(inst, speech_frame, frame_length,
                                            feature_vector);

  // Make a VAD
  inst->vad = GmmProbability(inst, feature_vector, total_power, frame_length);

  return inst->vad;
}