1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/audio_vector.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include "rtc_base/checks.h"
namespace webrtc {
AudioVector::AudioVector() : AudioVector(kDefaultInitialSize) {
Clear();
}
AudioVector::AudioVector(size_t initial_size)
: array_(new int16_t[initial_size + 1]),
capacity_(initial_size + 1),
begin_index_(0),
end_index_(capacity_ - 1) {
memset(array_.get(), 0, capacity_ * sizeof(int16_t));
}
AudioVector::~AudioVector() = default;
void AudioVector::Clear() {
end_index_ = begin_index_ = 0;
}
void AudioVector::CopyTo(AudioVector* copy_to) const {
RTC_DCHECK(copy_to);
copy_to->Reserve(Size());
CopyTo(Size(), 0, copy_to->array_.get());
copy_to->begin_index_ = 0;
copy_to->end_index_ = Size();
}
void AudioVector::CopyTo(size_t length,
size_t position,
int16_t* copy_to) const {
if (length == 0)
return;
length = std::min(length, Size() - position);
const size_t copy_index = (begin_index_ + position) % capacity_;
const size_t first_chunk_length = std::min(length, capacity_ - copy_index);
memcpy(copy_to, &array_[copy_index], first_chunk_length * sizeof(int16_t));
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0) {
memcpy(©_to[first_chunk_length], array_.get(),
remaining_length * sizeof(int16_t));
}
}
void AudioVector::PushFront(const AudioVector& prepend_this) {
const size_t length = prepend_this.Size();
if (length == 0)
return;
// Although the subsequent calling to PushFront does Reserve in it, it is
// always more efficient to do a big Reserve first.
Reserve(Size() + length);
const size_t first_chunk_length =
std::min(length, prepend_this.capacity_ - prepend_this.begin_index_);
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0)
PushFront(prepend_this.array_.get(), remaining_length);
PushFront(&prepend_this.array_[prepend_this.begin_index_],
first_chunk_length);
}
void AudioVector::PushFront(const int16_t* prepend_this, size_t length) {
if (length == 0)
return;
Reserve(Size() + length);
const size_t first_chunk_length = std::min(length, begin_index_);
memcpy(&array_[begin_index_ - first_chunk_length],
&prepend_this[length - first_chunk_length],
first_chunk_length * sizeof(int16_t));
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0) {
memcpy(&array_[capacity_ - remaining_length], prepend_this,
remaining_length * sizeof(int16_t));
}
begin_index_ = (begin_index_ + capacity_ - length) % capacity_;
}
void AudioVector::PushBack(const AudioVector& append_this) {
PushBack(append_this, append_this.Size(), 0);
}
void AudioVector::PushBack(const AudioVector& append_this,
size_t length,
size_t position) {
RTC_DCHECK_LE(position, append_this.Size());
RTC_DCHECK_LE(length, append_this.Size() - position);
if (length == 0)
return;
// Although the subsequent calling to PushBack does Reserve in it, it is
// always more efficient to do a big Reserve first.
Reserve(Size() + length);
const size_t start_index =
(append_this.begin_index_ + position) % append_this.capacity_;
const size_t first_chunk_length =
std::min(length, append_this.capacity_ - start_index);
PushBack(&append_this.array_[start_index], first_chunk_length);
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0)
PushBack(append_this.array_.get(), remaining_length);
}
void AudioVector::PushBack(const int16_t* append_this, size_t length) {
if (length == 0)
return;
Reserve(Size() + length);
const size_t first_chunk_length = std::min(length, capacity_ - end_index_);
memcpy(&array_[end_index_], append_this,
first_chunk_length * sizeof(int16_t));
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0) {
memcpy(array_.get(), &append_this[first_chunk_length],
remaining_length * sizeof(int16_t));
}
end_index_ = (end_index_ + length) % capacity_;
}
void AudioVector::PopFront(size_t length) {
if (length == 0)
return;
length = std::min(length, Size());
begin_index_ = (begin_index_ + length) % capacity_;
}
void AudioVector::PopBack(size_t length) {
if (length == 0)
return;
// Never remove more than what is in the array.
length = std::min(length, Size());
end_index_ = (end_index_ + capacity_ - length) % capacity_;
}
void AudioVector::Extend(size_t extra_length) {
if (extra_length == 0)
return;
InsertZerosByPushBack(extra_length, Size());
}
void AudioVector::InsertAt(const int16_t* insert_this,
size_t length,
size_t position) {
if (length == 0)
return;
// Cap the insert position at the current array length.
position = std::min(Size(), position);
// When inserting to a position closer to the beginning, it is more efficient
// to insert by pushing front than to insert by pushing back, since less data
// will be moved, vice versa.
if (position <= Size() - position) {
InsertByPushFront(insert_this, length, position);
} else {
InsertByPushBack(insert_this, length, position);
}
}
void AudioVector::InsertZerosAt(size_t length, size_t position) {
if (length == 0)
return;
// Cap the insert position at the current array length.
position = std::min(Size(), position);
// When inserting to a position closer to the beginning, it is more efficient
// to insert by pushing front than to insert by pushing back, since less data
// will be moved, vice versa.
if (position <= Size() - position) {
InsertZerosByPushFront(length, position);
} else {
InsertZerosByPushBack(length, position);
}
}
void AudioVector::OverwriteAt(const AudioVector& insert_this,
size_t length,
size_t position) {
RTC_DCHECK_LE(length, insert_this.Size());
if (length == 0)
return;
// Cap the insert position at the current array length.
position = std::min(Size(), position);
// Although the subsequent calling to OverwriteAt does Reserve in it, it is
// always more efficient to do a big Reserve first.
size_t new_size = std::max(Size(), position + length);
Reserve(new_size);
const size_t first_chunk_length =
std::min(length, insert_this.capacity_ - insert_this.begin_index_);
OverwriteAt(&insert_this.array_[insert_this.begin_index_], first_chunk_length,
position);
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0) {
OverwriteAt(insert_this.array_.get(), remaining_length,
position + first_chunk_length);
}
}
void AudioVector::OverwriteAt(const int16_t* insert_this,
size_t length,
size_t position) {
if (length == 0)
return;
// Cap the insert position at the current array length.
position = std::min(Size(), position);
size_t new_size = std::max(Size(), position + length);
Reserve(new_size);
const size_t overwrite_index = (begin_index_ + position) % capacity_;
const size_t first_chunk_length =
std::min(length, capacity_ - overwrite_index);
memcpy(&array_[overwrite_index], insert_this,
first_chunk_length * sizeof(int16_t));
const size_t remaining_length = length - first_chunk_length;
if (remaining_length > 0) {
memcpy(array_.get(), &insert_this[first_chunk_length],
remaining_length * sizeof(int16_t));
}
end_index_ = (begin_index_ + new_size) % capacity_;
}
void AudioVector::CrossFade(const AudioVector& append_this,
size_t fade_length) {
// Fade length cannot be longer than the current vector or `append_this`.
RTC_DCHECK_LE(fade_length, Size());
RTC_DCHECK_LE(fade_length, append_this.Size());
fade_length = std::min(fade_length, Size());
fade_length = std::min(fade_length, append_this.Size());
size_t position = Size() - fade_length + begin_index_;
// Cross fade the overlapping regions.
// `alpha` is the mixing factor in Q14.
// TODO(hlundin): Consider skipping +1 in the denominator to produce a
// smoother cross-fade, in particular at the end of the fade.
int alpha_step = 16384 / (static_cast<int>(fade_length) + 1);
int alpha = 16384;
for (size_t i = 0; i < fade_length; ++i) {
alpha -= alpha_step;
array_[(position + i) % capacity_] =
(alpha * array_[(position + i) % capacity_] +
(16384 - alpha) * append_this[i] + 8192) >>
14;
}
RTC_DCHECK_GE(alpha, 0); // Verify that the slope was correct.
// Append what is left of `append_this`.
size_t samples_to_push_back = append_this.Size() - fade_length;
if (samples_to_push_back > 0)
PushBack(append_this, samples_to_push_back, fade_length);
}
// Returns the number of elements in this AudioVector.
size_t AudioVector::Size() const {
return (end_index_ + capacity_ - begin_index_) % capacity_;
}
// Returns true if this AudioVector is empty.
bool AudioVector::Empty() const {
return begin_index_ == end_index_;
}
void AudioVector::Reserve(size_t n) {
if (capacity_ > n)
return;
const size_t length = Size();
// Reserve one more sample to remove the ambiguity between empty vector and
// full vector. Therefore `begin_index_` == `end_index_` indicates empty
// vector, and `begin_index_` == (`end_index_` + 1) % capacity indicates
// full vector.
std::unique_ptr<int16_t[]> temp_array(new int16_t[n + 1]);
CopyTo(length, 0, temp_array.get());
array_.swap(temp_array);
begin_index_ = 0;
end_index_ = length;
capacity_ = n + 1;
}
void AudioVector::InsertByPushBack(const int16_t* insert_this,
size_t length,
size_t position) {
const size_t move_chunk_length = Size() - position;
std::unique_ptr<int16_t[]> temp_array(nullptr);
if (move_chunk_length > 0) {
// TODO(minyue): see if it is possible to avoid copying to a buffer.
temp_array.reset(new int16_t[move_chunk_length]);
CopyTo(move_chunk_length, position, temp_array.get());
PopBack(move_chunk_length);
}
Reserve(Size() + length + move_chunk_length);
PushBack(insert_this, length);
if (move_chunk_length > 0)
PushBack(temp_array.get(), move_chunk_length);
}
void AudioVector::InsertByPushFront(const int16_t* insert_this,
size_t length,
size_t position) {
std::unique_ptr<int16_t[]> temp_array(nullptr);
if (position > 0) {
// TODO(minyue): see if it is possible to avoid copying to a buffer.
temp_array.reset(new int16_t[position]);
CopyTo(position, 0, temp_array.get());
PopFront(position);
}
Reserve(Size() + length + position);
PushFront(insert_this, length);
if (position > 0)
PushFront(temp_array.get(), position);
}
void AudioVector::InsertZerosByPushBack(size_t length, size_t position) {
const size_t move_chunk_length = Size() - position;
std::unique_ptr<int16_t[]> temp_array(nullptr);
if (move_chunk_length > 0) {
temp_array.reset(new int16_t[move_chunk_length]);
CopyTo(move_chunk_length, position, temp_array.get());
PopBack(move_chunk_length);
}
Reserve(Size() + length + move_chunk_length);
const size_t first_zero_chunk_length =
std::min(length, capacity_ - end_index_);
memset(&array_[end_index_], 0, first_zero_chunk_length * sizeof(int16_t));
const size_t remaining_zero_length = length - first_zero_chunk_length;
if (remaining_zero_length > 0)
memset(array_.get(), 0, remaining_zero_length * sizeof(int16_t));
end_index_ = (end_index_ + length) % capacity_;
if (move_chunk_length > 0)
PushBack(temp_array.get(), move_chunk_length);
}
void AudioVector::InsertZerosByPushFront(size_t length, size_t position) {
std::unique_ptr<int16_t[]> temp_array(nullptr);
if (position > 0) {
temp_array.reset(new int16_t[position]);
CopyTo(position, 0, temp_array.get());
PopFront(position);
}
Reserve(Size() + length + position);
const size_t first_zero_chunk_length = std::min(length, begin_index_);
memset(&array_[begin_index_ - first_zero_chunk_length], 0,
first_zero_chunk_length * sizeof(int16_t));
const size_t remaining_zero_length = length - first_zero_chunk_length;
if (remaining_zero_length > 0)
memset(&array_[capacity_ - remaining_zero_length], 0,
remaining_zero_length * sizeof(int16_t));
begin_index_ = (begin_index_ + capacity_ - length) % capacity_;
if (position > 0)
PushFront(temp_array.get(), position);
}
} // namespace webrtc
|