1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/background_noise.h"
#include <string.h> // memcpy
#include <algorithm> // min, max
#include <cstdint>
#include "api/array_view.h"
#include "common_audio/signal_processing/dot_product_with_scale.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/signal_processing/include/spl_inl.h"
#include "modules/audio_coding/neteq/audio_multi_vector.h"
#include "modules/audio_coding/neteq/cross_correlation.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
constexpr size_t kMaxSampleRate = 48000;
} // namespace
// static
constexpr size_t BackgroundNoise::kMaxLpcOrder;
BackgroundNoise::BackgroundNoise(size_t num_channels)
: num_channels_(num_channels),
channel_parameters_(new ChannelParameters[num_channels_]) {
Reset();
}
BackgroundNoise::~BackgroundNoise() {}
void BackgroundNoise::Reset() {
initialized_ = false;
for (size_t channel = 0; channel < num_channels_; ++channel) {
channel_parameters_[channel].Reset();
}
}
bool BackgroundNoise::Update(const AudioMultiVector& sync_buffer) {
bool filter_params_saved = false;
int32_t auto_correlation[kMaxLpcOrder + 1];
int16_t filter_output[kMaxLpcOrder + kResidualLength];
int16_t reflection_coefficients[kMaxLpcOrder];
int16_t lpc_coefficients[kMaxLpcOrder + 1];
for (size_t channel_ix = 0; channel_ix < num_channels_; ++channel_ix) {
ChannelParameters& parameters = channel_parameters_[channel_ix];
int16_t temp_signal_array[kVecLen + kMaxLpcOrder] = {0};
int16_t* temp_signal = &temp_signal_array[kMaxLpcOrder];
RTC_DCHECK_GE(sync_buffer.Size(), kVecLen);
sync_buffer[channel_ix].CopyTo(kVecLen, sync_buffer.Size() - kVecLen,
temp_signal);
int32_t sample_energy =
CalculateAutoCorrelation(temp_signal, kVecLen, auto_correlation);
if (sample_energy < parameters.energy_update_threshold) {
// Generate LPC coefficients.
if (auto_correlation[0] <= 0) {
// Center value in auto-correlation is not positive. Do not update.
return filter_params_saved;
}
// Regardless of whether the filter is actually updated or not,
// update energy threshold levels, since we have in fact observed
// a low energy signal.
if (sample_energy < parameters.energy_update_threshold) {
// Never go under 1.0 in average sample energy.
parameters.energy_update_threshold = std::max(sample_energy, 1);
parameters.low_energy_update_threshold = 0;
}
// Only update BGN if filter is stable, i.e., if return value from
// Levinson-Durbin function is 1.
if (WebRtcSpl_LevinsonDurbin(auto_correlation, lpc_coefficients,
reflection_coefficients,
kMaxLpcOrder) != 1) {
return filter_params_saved;
}
// Generate the CNG gain factor by looking at the energy of the residual.
WebRtcSpl_FilterMAFastQ12(temp_signal + kVecLen - kResidualLength,
filter_output, lpc_coefficients,
kMaxLpcOrder + 1, kResidualLength);
int32_t residual_energy = WebRtcSpl_DotProductWithScale(
filter_output, filter_output, kResidualLength, 0);
// Check spectral flatness.
// Comparing the residual variance with the input signal variance tells
// if the spectrum is flat or not.
// If 5 * residual_energy >= 16 * sample_energy, the spectrum is flat
// enough. Also ensure that the energy is non-zero.
if ((sample_energy > 0) &&
(int64_t{5} * residual_energy >= int64_t{16} * sample_energy)) {
// Spectrum is flat enough; save filter parameters.
// `temp_signal` + `kVecLen` - `kMaxLpcOrder` points at the first of the
// `kMaxLpcOrder` samples in the residual signal, which will form the
// filter state for the next noise generation.
SaveParameters(channel_ix, lpc_coefficients,
temp_signal + kVecLen - kMaxLpcOrder, sample_energy,
residual_energy);
filter_params_saved = true;
}
} else {
// Will only happen if `sample_energy` is not low enough. Increase the
// threshold for update so that it increases by a factor 4 in 4 seconds.
IncrementEnergyThreshold(channel_ix, sample_energy);
}
}
return filter_params_saved;
}
void BackgroundNoise::GenerateBackgroundNoise(
ArrayView<const int16_t> random_vector,
size_t channel,
int /* mute_slope */,
bool /* too_many_expands */,
size_t num_noise_samples,
int16_t* buffer) {
constexpr size_t kNoiseLpcOrder = kMaxLpcOrder;
int16_t scaled_random_vector[kMaxSampleRate / 8000 * 125];
RTC_DCHECK_LE(num_noise_samples, (kMaxSampleRate / 8000 * 125));
RTC_DCHECK_GE(random_vector.size(), num_noise_samples);
int16_t* noise_samples = &buffer[kNoiseLpcOrder];
if (initialized()) {
// Use background noise parameters.
memcpy(noise_samples - kNoiseLpcOrder, FilterState(channel),
sizeof(int16_t) * kNoiseLpcOrder);
int dc_offset = 0;
if (ScaleShift(channel) > 1) {
dc_offset = 1 << (ScaleShift(channel) - 1);
}
// Scale random vector to correct energy level.
WebRtcSpl_AffineTransformVector(scaled_random_vector, random_vector.data(),
Scale(channel), dc_offset,
ScaleShift(channel), num_noise_samples);
WebRtcSpl_FilterARFastQ12(scaled_random_vector, noise_samples,
Filter(channel), kNoiseLpcOrder + 1,
num_noise_samples);
SetFilterState(
channel,
{&(noise_samples[num_noise_samples - kNoiseLpcOrder]), kNoiseLpcOrder});
// Unmute the background noise.
int16_t bgn_mute_factor = MuteFactor(channel);
if (bgn_mute_factor < 16384) {
WebRtcSpl_AffineTransformVector(noise_samples, noise_samples,
bgn_mute_factor, 8192, 14,
num_noise_samples);
}
// Update mute_factor in BackgroundNoise class.
SetMuteFactor(channel, bgn_mute_factor);
} else {
// BGN parameters have not been initialized; use zero noise.
memset(noise_samples, 0, sizeof(int16_t) * num_noise_samples);
}
}
int32_t BackgroundNoise::Energy(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].energy;
}
void BackgroundNoise::SetMuteFactor(size_t channel, int16_t value) {
RTC_DCHECK_LT(channel, num_channels_);
channel_parameters_[channel].mute_factor = value;
}
int16_t BackgroundNoise::MuteFactor(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].mute_factor;
}
const int16_t* BackgroundNoise::Filter(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].filter;
}
const int16_t* BackgroundNoise::FilterState(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].filter_state;
}
void BackgroundNoise::SetFilterState(size_t channel,
ArrayView<const int16_t> input) {
RTC_DCHECK_LT(channel, num_channels_);
size_t length = std::min(input.size(), kMaxLpcOrder);
memcpy(channel_parameters_[channel].filter_state, input.data(),
length * sizeof(int16_t));
}
int16_t BackgroundNoise::Scale(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].scale;
}
int16_t BackgroundNoise::ScaleShift(size_t channel) const {
RTC_DCHECK_LT(channel, num_channels_);
return channel_parameters_[channel].scale_shift;
}
int32_t BackgroundNoise::CalculateAutoCorrelation(
const int16_t* signal,
size_t length,
int32_t* auto_correlation) const {
static const int kCorrelationStep = -1;
const int correlation_scale =
CrossCorrelationWithAutoShift(signal, signal, length, kMaxLpcOrder + 1,
kCorrelationStep, auto_correlation);
// Number of shifts to normalize energy to energy/sample.
int energy_sample_shift = kLogVecLen - correlation_scale;
return auto_correlation[0] >> energy_sample_shift;
}
void BackgroundNoise::IncrementEnergyThreshold(size_t channel,
int32_t sample_energy) {
// TODO(hlundin): Simplify the below threshold update. What this code
// does is simply "threshold += (increment * threshold) >> 16", but due
// to the limited-width operations, it is not exactly the same. The
// difference should be inaudible, but bit-exactness would not be
// maintained.
RTC_DCHECK_LT(channel, num_channels_);
ChannelParameters& parameters = channel_parameters_[channel];
int32_t temp_energy =
(kThresholdIncrement * parameters.low_energy_update_threshold) >> 16;
temp_energy +=
kThresholdIncrement * (parameters.energy_update_threshold & 0xFF);
temp_energy +=
(kThresholdIncrement * ((parameters.energy_update_threshold >> 8) & 0xFF))
<< 8;
parameters.low_energy_update_threshold += temp_energy;
parameters.energy_update_threshold +=
kThresholdIncrement * (parameters.energy_update_threshold >> 16);
parameters.energy_update_threshold +=
parameters.low_energy_update_threshold >> 16;
parameters.low_energy_update_threshold =
parameters.low_energy_update_threshold & 0x0FFFF;
// Update maximum energy.
// Decrease by a factor 1/1024 each time.
parameters.max_energy = parameters.max_energy - (parameters.max_energy >> 10);
if (sample_energy > parameters.max_energy) {
parameters.max_energy = sample_energy;
}
// Set `energy_update_threshold` to no less than 60 dB lower than
// `max_energy_`. Adding 524288 assures proper rounding.
int32_t energy_update_threshold = (parameters.max_energy + 524288) >> 20;
if (energy_update_threshold > parameters.energy_update_threshold) {
parameters.energy_update_threshold = energy_update_threshold;
}
}
void BackgroundNoise::SaveParameters(size_t channel,
const int16_t* lpc_coefficients,
const int16_t* filter_state,
int32_t sample_energy,
int32_t residual_energy) {
RTC_DCHECK_LT(channel, num_channels_);
ChannelParameters& parameters = channel_parameters_[channel];
memcpy(parameters.filter, lpc_coefficients,
(kMaxLpcOrder + 1) * sizeof(int16_t));
memcpy(parameters.filter_state, filter_state, kMaxLpcOrder * sizeof(int16_t));
// Save energy level and update energy threshold levels.
// Never get under 1.0 in average sample energy.
parameters.energy = std::max(sample_energy, 1);
parameters.energy_update_threshold = parameters.energy;
parameters.low_energy_update_threshold = 0;
// Normalize residual_energy to 29 or 30 bits before sqrt.
int16_t norm_shift = WebRtcSpl_NormW32(residual_energy) - 1;
if (norm_shift & 0x1) {
norm_shift -= 1; // Even number of shifts required.
}
residual_energy = WEBRTC_SPL_SHIFT_W32(residual_energy, norm_shift);
// Calculate scale and shift factor.
parameters.scale = static_cast<int16_t>(WebRtcSpl_SqrtFloor(residual_energy));
// Add 13 to the `scale_shift_`, since the random numbers table is in
// Q13.
// TODO(hlundin): Move the "13" to where the `scale_shift_` is used?
parameters.scale_shift =
static_cast<int16_t>(13 + ((kLogResidualLength + norm_shift) / 2));
initialized_ = true;
}
} // namespace webrtc
|