1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/decision_logic.h"
#include <stdio.h>
#include <cstdint>
#include <memory>
#include <optional>
#include <utility>
#include "api/environment/environment.h"
#include "api/neteq/neteq.h"
#include "api/neteq/neteq_controller.h"
#include "modules/audio_coding/neteq/buffer_level_filter.h"
#include "modules/audio_coding/neteq/delay_manager.h"
#include "modules/audio_coding/neteq/packet_arrival_history.h"
#include "modules/audio_coding/neteq/packet_buffer.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace {
constexpr int kPostponeDecodingLevel = 50;
constexpr int kTargetLevelWindowMs = 100;
// The granularity of delay adjustments (accelerate/preemptive expand) is 15ms,
// but round up since the clock has a granularity of 10ms.
constexpr int kDelayAdjustmentGranularityMs = 20;
constexpr int kPacketHistorySizeMs = 2000;
constexpr size_t kCngTimeoutMs = 1000;
std::unique_ptr<DelayManager> CreateDelayManager(
const Environment& env,
const NetEqController::Config& neteq_config) {
DelayManager::Config config(env.field_trials());
config.Log();
return std::make_unique<DelayManager>(config, neteq_config.tick_timer);
}
bool IsTimestretch(NetEq::Mode mode) {
return mode == NetEq::Mode::kAccelerateSuccess ||
mode == NetEq::Mode::kAccelerateLowEnergy ||
mode == NetEq::Mode::kPreemptiveExpandSuccess ||
mode == NetEq::Mode::kPreemptiveExpandLowEnergy;
}
bool IsCng(NetEq::Mode mode) {
return mode == NetEq::Mode::kRfc3389Cng ||
mode == NetEq::Mode::kCodecInternalCng;
}
bool IsExpand(NetEq::Mode mode) {
return mode == NetEq::Mode::kExpand || mode == NetEq::Mode::kCodecPlc;
}
} // namespace
DecisionLogic::DecisionLogic(const Environment& env,
NetEqController::Config config)
: DecisionLogic(config,
CreateDelayManager(env, config),
std::make_unique<BufferLevelFilter>()) {}
DecisionLogic::DecisionLogic(
NetEqController::Config config,
std::unique_ptr<DelayManager> delay_manager,
std::unique_ptr<BufferLevelFilter> buffer_level_filter,
std::unique_ptr<PacketArrivalHistory> packet_arrival_history)
: delay_manager_(std::move(delay_manager)),
delay_constraints_(config.max_packets_in_buffer,
config.base_min_delay_ms),
buffer_level_filter_(std::move(buffer_level_filter)),
packet_arrival_history_(
packet_arrival_history
? std::move(packet_arrival_history)
: std::make_unique<PacketArrivalHistory>(config.tick_timer,
kPacketHistorySizeMs)),
tick_timer_(config.tick_timer),
disallow_time_stretching_(!config.allow_time_stretching),
timescale_countdown_(
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1)) {}
DecisionLogic::~DecisionLogic() = default;
void DecisionLogic::SoftReset() {
packet_length_samples_ = 0;
sample_memory_ = 0;
prev_time_scale_ = false;
timescale_countdown_ =
tick_timer_->GetNewCountdown(kMinTimescaleInterval + 1);
time_stretched_cn_samples_ = 0;
delay_manager_->Reset();
buffer_level_filter_->Reset();
packet_arrival_history_->Reset();
}
void DecisionLogic::SetSampleRate(int fs_hz, size_t output_size_samples) {
// TODO(hlundin): Change to an enumerator and skip assert.
RTC_DCHECK(fs_hz == 8000 || fs_hz == 16000 || fs_hz == 32000 ||
fs_hz == 48000);
sample_rate_khz_ = fs_hz / 1000;
output_size_samples_ = output_size_samples;
packet_arrival_history_->set_sample_rate(fs_hz);
}
NetEq::Operation DecisionLogic::GetDecision(const NetEqStatus& status,
bool* /* reset_decoder */) {
prev_time_scale_ = prev_time_scale_ && IsTimestretch(status.last_mode);
if (prev_time_scale_) {
timescale_countdown_ = tick_timer_->GetNewCountdown(kMinTimescaleInterval);
}
if (!IsCng(status.last_mode) && !IsExpand(status.last_mode)) {
FilterBufferLevel(status.packet_buffer_info.span_samples);
}
// Guard for errors, to avoid getting stuck in error mode.
if (status.last_mode == NetEq::Mode::kError) {
if (!status.next_packet) {
return NetEq::Operation::kExpand;
} else {
// Use kUndefined to flag for a reset.
return NetEq::Operation::kUndefined;
}
}
if (status.next_packet && status.next_packet->is_cng) {
return CngOperation(status);
}
// Handle the case with no packet at all available (except maybe DTMF).
if (!status.next_packet) {
return NoPacket(status);
}
if (PostponeDecode(status)) {
return NoPacket(status);
}
const uint32_t five_seconds_samples =
static_cast<uint32_t>(5000 * sample_rate_khz_);
// Check if the required packet is available.
if (status.target_timestamp == status.next_packet->timestamp) {
return ExpectedPacketAvailable(status);
}
if (!PacketBuffer::IsObsoleteTimestamp(status.next_packet->timestamp,
status.target_timestamp,
five_seconds_samples)) {
return FuturePacketAvailable(status);
}
// This implies that available_timestamp < target_timestamp, which can
// happen when a new stream or codec is received. Signal for a reset.
return NetEq::Operation::kUndefined;
}
int DecisionLogic::TargetLevelMs() const {
return delay_constraints_.Clamp(UnlimitedTargetLevelMs());
}
int DecisionLogic::UnlimitedTargetLevelMs() const {
return delay_manager_->TargetDelayMs();
}
int DecisionLogic::GetFilteredBufferLevel() const {
return buffer_level_filter_->filtered_current_level();
}
std::optional<int> DecisionLogic::PacketArrived(int fs_hz,
bool should_update_stats,
const PacketArrivedInfo& info) {
buffer_flush_ = buffer_flush_ || info.buffer_flush;
if (!should_update_stats || info.is_cng_or_dtmf) {
return std::nullopt;
}
if (info.packet_length_samples > 0 && fs_hz > 0 &&
info.packet_length_samples != packet_length_samples_) {
packet_length_samples_ = info.packet_length_samples;
delay_constraints_.SetPacketAudioLength(packet_length_samples_ * 1000 /
fs_hz);
}
bool inserted = packet_arrival_history_->Insert(info.main_timestamp,
info.packet_length_samples);
if (!inserted || packet_arrival_history_->size() < 2) {
// No meaningful delay estimate unless at least 2 packets have arrived.
return std::nullopt;
}
int arrival_delay_ms =
packet_arrival_history_->GetDelayMs(info.main_timestamp);
bool reordered =
!packet_arrival_history_->IsNewestRtpTimestamp(info.main_timestamp);
delay_manager_->Update(arrival_delay_ms, reordered);
return arrival_delay_ms;
}
void DecisionLogic::FilterBufferLevel(size_t buffer_size_samples) {
buffer_level_filter_->SetTargetBufferLevel(TargetLevelMs());
int time_stretched_samples = time_stretched_cn_samples_;
if (prev_time_scale_) {
time_stretched_samples += sample_memory_;
}
if (buffer_flush_) {
buffer_level_filter_->SetFilteredBufferLevel(buffer_size_samples);
buffer_flush_ = false;
} else {
buffer_level_filter_->Update(buffer_size_samples, time_stretched_samples);
}
prev_time_scale_ = false;
time_stretched_cn_samples_ = 0;
}
NetEq::Operation DecisionLogic::CngOperation(
NetEqController::NetEqStatus status) {
// Signed difference between target and available timestamp.
int32_t timestamp_diff = static_cast<int32_t>(
static_cast<uint32_t>(status.generated_noise_samples +
status.target_timestamp) -
status.next_packet->timestamp);
int optimal_level_samp = TargetLevelMs() * sample_rate_khz_;
const int64_t excess_waiting_time_samp =
-static_cast<int64_t>(timestamp_diff) - optimal_level_samp;
if (excess_waiting_time_samp > optimal_level_samp / 2) {
// The waiting time for this packet will be longer than 1.5
// times the wanted buffer delay. Apply fast-forward to cut the
// waiting time down to the optimal.
noise_fast_forward_ =
saturated_cast<size_t>(noise_fast_forward_ + excess_waiting_time_samp);
timestamp_diff =
saturated_cast<int32_t>(timestamp_diff + excess_waiting_time_samp);
}
if (timestamp_diff < 0 && status.last_mode == NetEq::Mode::kRfc3389Cng) {
// Not time to play this packet yet. Wait another round before using this
// packet. Keep on playing CNG from previous CNG parameters.
return NetEq::Operation::kRfc3389CngNoPacket;
} else {
// Otherwise, go for the CNG packet now.
noise_fast_forward_ = 0;
return NetEq::Operation::kRfc3389Cng;
}
}
NetEq::Operation DecisionLogic::NoPacket(NetEqController::NetEqStatus status) {
switch (status.last_mode) {
case NetEq::Mode::kRfc3389Cng:
return NetEq::Operation::kRfc3389CngNoPacket;
case NetEq::Mode::kCodecInternalCng: {
// Stop CNG after a timeout.
if (status.generated_noise_samples > kCngTimeoutMs * sample_rate_khz_) {
return NetEq::Operation::kExpand;
}
return NetEq::Operation::kCodecInternalCng;
}
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
NetEq::Operation DecisionLogic::ExpectedPacketAvailable(
NetEqController::NetEqStatus status) {
if (!disallow_time_stretching_ && status.last_mode != NetEq::Mode::kExpand &&
!status.play_dtmf) {
const int playout_delay_ms = GetPlayoutDelayMs(status);
const int64_t low_limit = TargetLevelMs();
const int64_t high_limit = low_limit +
packet_arrival_history_->GetMaxDelayMs() +
kDelayAdjustmentGranularityMs;
if (playout_delay_ms >= high_limit * 4) {
return NetEq::Operation::kFastAccelerate;
}
if (TimescaleAllowed()) {
if (playout_delay_ms >= high_limit) {
return NetEq::Operation::kAccelerate;
}
if (playout_delay_ms < low_limit) {
return NetEq::Operation::kPreemptiveExpand;
}
}
}
return NetEq::Operation::kNormal;
}
NetEq::Operation DecisionLogic::FuturePacketAvailable(
NetEqController::NetEqStatus status) {
// Required packet is not available, but a future packet is.
// Check if we should continue with an ongoing concealment because the new
// packet is too far into the future.
const int buffer_delay_samples =
status.packet_buffer_info.span_samples_wait_time;
const int buffer_delay_ms = buffer_delay_samples / sample_rate_khz_;
const int high_limit = TargetLevelMs() + kTargetLevelWindowMs / 2;
const bool above_target_delay = buffer_delay_ms > high_limit;
if ((PacketTooEarly(status) && !above_target_delay)) {
return NoPacket(status);
}
uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
if (timestamp_leap != status.generated_noise_samples) {
// The delay was adjusted, reinitialize the buffer level filter.
buffer_level_filter_->SetFilteredBufferLevel(buffer_delay_samples);
}
// Time to play the next packet.
switch (status.last_mode) {
case NetEq::Mode::kExpand:
return NetEq::Operation::kMerge;
case NetEq::Mode::kCodecPlc:
case NetEq::Mode::kRfc3389Cng:
case NetEq::Mode::kCodecInternalCng:
return NetEq::Operation::kNormal;
default:
return status.play_dtmf ? NetEq::Operation::kDtmf
: NetEq::Operation::kExpand;
}
}
bool DecisionLogic::UnderTargetLevel() const {
return buffer_level_filter_->filtered_current_level() <
TargetLevelMs() * sample_rate_khz_;
}
bool DecisionLogic::PostponeDecode(NetEqController::NetEqStatus status) const {
// Make sure we don't restart audio too soon after CNG or expand to avoid
// running out of data right away again.
const size_t min_buffer_level_samples =
TargetLevelMs() * sample_rate_khz_ * kPostponeDecodingLevel / 100;
const size_t buffer_level_samples =
status.packet_buffer_info.span_samples_wait_time;
if (buffer_level_samples >= min_buffer_level_samples) {
return false;
}
// Don't postpone decoding if there is a future DTX packet in the packet
// buffer.
if (status.packet_buffer_info.dtx_or_cng) {
return false;
}
// Continue CNG until the buffer is at least at the minimum level.
if (IsCng(status.last_mode)) {
return true;
}
// Only continue expand if the mute factor is low enough (otherwise the
// expansion was short enough to not be noticable). Note that the MuteFactor
// is in Q14, so a value of 16384 corresponds to 1.
if (IsExpand(status.last_mode) && status.expand_mutefactor < 16384 / 2) {
return true;
}
return false;
}
bool DecisionLogic::PacketTooEarly(NetEqController::NetEqStatus status) const {
const uint32_t timestamp_leap =
status.next_packet->timestamp - status.target_timestamp;
return timestamp_leap > status.generated_noise_samples;
}
int DecisionLogic::GetPlayoutDelayMs(
NetEqController::NetEqStatus status) const {
uint32_t playout_timestamp =
status.target_timestamp - status.sync_buffer_samples;
return packet_arrival_history_->GetDelayMs(playout_timestamp);
}
} // namespace webrtc
|