1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
// Test to verify correct stereo and multi-channel operation.
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <list>
#include <memory>
#include <ostream>
#include <string>
#include "api/array_view.h"
#include "api/audio/audio_frame.h"
#include "api/audio_codecs/audio_format.h"
#include "api/audio_codecs/builtin_audio_decoder_factory.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "api/neteq/default_neteq_factory.h"
#include "api/neteq/neteq.h"
#include "api/rtp_headers.h"
#include "api/units/timestamp.h"
#include "modules/audio_coding/codecs/pcm16b/pcm16b.h"
#include "modules/audio_coding/neteq/tools/input_audio_file.h"
#include "modules/audio_coding/neteq/tools/rtp_generator.h"
#include "rtc_base/checks.h"
#include "rtc_base/strings/string_builder.h"
#include "system_wrappers/include/clock.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
namespace webrtc {
struct TestParameters {
int frame_size;
int sample_rate;
size_t num_channels;
};
// This is a parameterized test. The test parameters are supplied through a
// TestParameters struct, which is obtained through the GetParam() method.
//
// The objective of the test is to create a mono input signal and a
// multi-channel input signal, where each channel is identical to the mono
// input channel. The two input signals are processed through their respective
// NetEq instances. After that, the output signals are compared. The expected
// result is that each channel in the multi-channel output is identical to the
// mono output.
class NetEqStereoTest : public ::testing::TestWithParam<TestParameters> {
protected:
static const int kTimeStepMs = 10;
static const size_t kMaxBlockSize = 480; // 10 ms @ 48 kHz.
static const uint8_t kPayloadTypeMono = 95;
static const uint8_t kPayloadTypeMulti = 96;
NetEqStereoTest()
: num_channels_(GetParam().num_channels),
sample_rate_hz_(GetParam().sample_rate),
samples_per_ms_(sample_rate_hz_ / 1000),
frame_size_ms_(GetParam().frame_size),
frame_size_samples_(
static_cast<size_t>(frame_size_ms_ * samples_per_ms_)),
output_size_samples_(10 * samples_per_ms_),
clock_(0),
env_(CreateEnvironment(&clock_)),
rtp_generator_mono_(samples_per_ms_),
rtp_generator_(samples_per_ms_),
payload_size_bytes_(0),
multi_payload_size_bytes_(0),
last_send_time_(0),
last_arrival_time_(0) {
NetEq::Config config;
config.sample_rate_hz = sample_rate_hz_;
DefaultNetEqFactory neteq_factory;
auto decoder_factory = CreateBuiltinAudioDecoderFactory();
neteq_mono_ = neteq_factory.Create(env_, config, decoder_factory);
neteq_ = neteq_factory.Create(env_, config, decoder_factory);
input_ = new int16_t[frame_size_samples_];
encoded_ = new uint8_t[2 * frame_size_samples_];
input_multi_channel_ = new int16_t[frame_size_samples_ * num_channels_];
encoded_multi_channel_ =
new uint8_t[frame_size_samples_ * 2 * num_channels_];
}
~NetEqStereoTest() {
delete[] input_;
delete[] encoded_;
delete[] input_multi_channel_;
delete[] encoded_multi_channel_;
}
virtual void SetUp() {
const std::string file_name =
test::ResourcePath("audio_coding/testfile32kHz", "pcm");
input_file_.reset(new test::InputAudioFile(file_name));
RTC_CHECK_GE(num_channels_, 2);
ASSERT_TRUE(neteq_mono_->RegisterPayloadType(
kPayloadTypeMono, SdpAudioFormat("l16", sample_rate_hz_, 1)));
ASSERT_TRUE(neteq_->RegisterPayloadType(
kPayloadTypeMulti,
SdpAudioFormat("l16", sample_rate_hz_, num_channels_)));
}
virtual void TearDown() {}
int GetNewPackets() {
if (!input_file_->Read(frame_size_samples_, input_)) {
return -1;
}
payload_size_bytes_ =
WebRtcPcm16b_Encode(input_, frame_size_samples_, encoded_);
if (frame_size_samples_ * 2 != payload_size_bytes_) {
return -1;
}
int next_send_time_ms = rtp_generator_mono_.GetRtpHeader(
kPayloadTypeMono, frame_size_samples_, &rtp_header_mono_);
MakeMultiChannelInput();
multi_payload_size_bytes_ = WebRtcPcm16b_Encode(
input_multi_channel_, frame_size_samples_ * num_channels_,
encoded_multi_channel_);
if (frame_size_samples_ * 2 * num_channels_ != multi_payload_size_bytes_) {
return -1;
}
rtp_generator_.GetRtpHeader(kPayloadTypeMulti, frame_size_samples_,
&rtp_header_);
return next_send_time_ms;
}
virtual void MakeMultiChannelInput() {
test::InputAudioFile::DuplicateInterleaved(
input_, frame_size_samples_, num_channels_, input_multi_channel_);
}
virtual void VerifyOutput(size_t num_samples) {
const int16_t* output_data = output_.data();
const int16_t* output_multi_channel_data = output_multi_channel_.data();
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 0; j < num_channels_; ++j) {
ASSERT_EQ(output_data[i],
output_multi_channel_data[i * num_channels_ + j])
<< "Diff in sample " << i << ", channel " << j << ".";
}
}
}
virtual int GetArrivalTime(int send_time) {
int arrival_time = last_arrival_time_ + (send_time - last_send_time_);
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
virtual bool Lost() { return false; }
void RunTest(int num_loops) {
// Get next input packets (mono and multi-channel).
int next_send_time_ms;
int next_arrival_time_ms;
do {
next_send_time_ms = GetNewPackets();
ASSERT_NE(-1, next_send_time_ms);
next_arrival_time_ms = GetArrivalTime(next_send_time_ms);
} while (Lost()); // If lost, immediately read the next packet.
int time_now_ms = 0;
for (int k = 0; k < num_loops; ++k) {
while (time_now_ms >= next_arrival_time_ms) {
// Insert packet in mono instance.
ASSERT_EQ(NetEq::kOK,
neteq_mono_->InsertPacket(
rtp_header_mono_,
ArrayView<const uint8_t>(encoded_, payload_size_bytes_),
Timestamp::Millis(time_now_ms)));
// Insert packet in multi-channel instance.
ASSERT_EQ(NetEq::kOK,
neteq_->InsertPacket(
rtp_header_,
ArrayView<const uint8_t>(encoded_multi_channel_,
multi_payload_size_bytes_),
Timestamp::Millis(time_now_ms)));
// Get next input packets (mono and multi-channel).
do {
next_send_time_ms = GetNewPackets();
ASSERT_NE(-1, next_send_time_ms);
next_arrival_time_ms = GetArrivalTime(next_send_time_ms);
} while (Lost()); // If lost, immediately read the next packet.
}
// Get audio from mono instance.
bool muted;
EXPECT_EQ(NetEq::kOK, neteq_mono_->GetAudio(&output_, &muted));
ASSERT_FALSE(muted);
EXPECT_EQ(1u, output_.num_channels_);
EXPECT_EQ(output_size_samples_, output_.samples_per_channel_);
// Get audio from multi-channel instance.
ASSERT_EQ(NetEq::kOK, neteq_->GetAudio(&output_multi_channel_, &muted));
ASSERT_FALSE(muted);
EXPECT_EQ(num_channels_, output_multi_channel_.num_channels_);
EXPECT_EQ(output_size_samples_,
output_multi_channel_.samples_per_channel_);
StringBuilder ss;
ss << "Lap number " << k << ".";
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
// Compare mono and multi-channel.
ASSERT_NO_FATAL_FAILURE(VerifyOutput(output_size_samples_));
time_now_ms += kTimeStepMs;
clock_.AdvanceTimeMilliseconds(kTimeStepMs);
}
}
const size_t num_channels_;
const int sample_rate_hz_;
const int samples_per_ms_;
const int frame_size_ms_;
const size_t frame_size_samples_;
const size_t output_size_samples_;
SimulatedClock clock_;
const Environment env_;
std::unique_ptr<NetEq> neteq_mono_;
std::unique_ptr<NetEq> neteq_;
test::RtpGenerator rtp_generator_mono_;
test::RtpGenerator rtp_generator_;
int16_t* input_;
int16_t* input_multi_channel_;
uint8_t* encoded_;
uint8_t* encoded_multi_channel_;
AudioFrame output_;
AudioFrame output_multi_channel_;
RTPHeader rtp_header_mono_;
RTPHeader rtp_header_;
size_t payload_size_bytes_;
size_t multi_payload_size_bytes_;
int last_send_time_;
int last_arrival_time_;
std::unique_ptr<test::InputAudioFile> input_file_;
};
class NetEqStereoTestNoJitter : public NetEqStereoTest {
protected:
NetEqStereoTestNoJitter() : NetEqStereoTest() {
// Start the sender 100 ms before the receiver to pre-fill the buffer.
// This is to avoid doing preemptive expand early in the test.
// TODO(hlundin): Mock the decision making instead to control the modes.
last_arrival_time_ = -100;
}
};
TEST_P(NetEqStereoTestNoJitter, RunTest) {
RunTest(8);
}
class NetEqStereoTestPositiveDrift : public NetEqStereoTest {
protected:
NetEqStereoTestPositiveDrift() : NetEqStereoTest(), drift_factor(0.9) {
// Start the sender 100 ms before the receiver to pre-fill the buffer.
// This is to avoid doing preemptive expand early in the test.
// TODO(hlundin): Mock the decision making instead to control the modes.
last_arrival_time_ = -100;
}
virtual int GetArrivalTime(int send_time) {
int arrival_time =
last_arrival_time_ + drift_factor * (send_time - last_send_time_);
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
double drift_factor;
};
TEST_P(NetEqStereoTestPositiveDrift, RunTest) {
RunTest(100);
}
class NetEqStereoTestNegativeDrift : public NetEqStereoTestPositiveDrift {
protected:
NetEqStereoTestNegativeDrift() : NetEqStereoTestPositiveDrift() {
drift_factor = 1.1;
last_arrival_time_ = 0;
}
};
TEST_P(NetEqStereoTestNegativeDrift, RunTest) {
RunTest(100);
}
class NetEqStereoTestDelays : public NetEqStereoTest {
protected:
static const int kDelayInterval = 10;
static const int kDelay = 1000;
NetEqStereoTestDelays() : NetEqStereoTest(), frame_index_(0) {}
virtual int GetArrivalTime(int send_time) {
// Deliver immediately, unless we have a back-log.
int arrival_time = std::min(last_arrival_time_, send_time);
if (++frame_index_ % kDelayInterval == 0) {
// Delay this packet.
arrival_time += kDelay;
}
last_send_time_ = send_time;
last_arrival_time_ = arrival_time;
return arrival_time;
}
int frame_index_;
};
TEST_P(NetEqStereoTestDelays, RunTest) {
RunTest(1000);
}
class NetEqStereoTestLosses : public NetEqStereoTest {
protected:
static const int kLossInterval = 10;
NetEqStereoTestLosses() : NetEqStereoTest(), frame_index_(0) {}
virtual bool Lost() { return (++frame_index_) % kLossInterval == 0; }
// TODO(hlundin): NetEq is not giving bitexact results for these cases.
virtual void VerifyOutput(size_t num_samples) {
for (size_t i = 0; i < num_samples; ++i) {
const int16_t* output_data = output_.data();
const int16_t* output_multi_channel_data = output_multi_channel_.data();
auto first_channel_sample = output_multi_channel_data[i * num_channels_];
for (size_t j = 0; j < num_channels_; ++j) {
const int kErrorMargin = 200;
EXPECT_NEAR(output_data[i],
output_multi_channel_data[i * num_channels_ + j],
kErrorMargin)
<< "Diff in sample " << i << ", channel " << j << ".";
EXPECT_EQ(first_channel_sample,
output_multi_channel_data[i * num_channels_ + j]);
}
}
}
int frame_index_;
};
TEST_P(NetEqStereoTestLosses, RunTest) {
RunTest(100);
}
class NetEqStereoTestSingleActiveChannelPlc : public NetEqStereoTestLosses {
protected:
NetEqStereoTestSingleActiveChannelPlc() : NetEqStereoTestLosses() {}
virtual void MakeMultiChannelInput() override {
// Create a multi-channel input by copying the mono channel from file to the
// first channel, and setting the others to zero.
memset(input_multi_channel_, 0,
frame_size_samples_ * num_channels_ * sizeof(int16_t));
for (size_t i = 0; i < frame_size_samples_; ++i) {
input_multi_channel_[i * num_channels_] = input_[i];
}
}
virtual void VerifyOutput(size_t num_samples) override {
// Simply verify that all samples in channels other than the first are zero.
const int16_t* output_multi_channel_data = output_multi_channel_.data();
for (size_t i = 0; i < num_samples; ++i) {
for (size_t j = 1; j < num_channels_; ++j) {
EXPECT_EQ(0, output_multi_channel_data[i * num_channels_ + j])
<< "Sample " << i << ", channel " << j << " is non-zero.";
}
}
}
};
TEST_P(NetEqStereoTestSingleActiveChannelPlc, RunTest) {
RunTest(100);
}
// Creates a list of parameter sets.
std::list<TestParameters> GetTestParameters() {
std::list<TestParameters> l;
const int sample_rates[] = {8000, 16000, 32000};
const int num_rates = sizeof(sample_rates) / sizeof(sample_rates[0]);
// Loop through sample rates.
for (int rate_index = 0; rate_index < num_rates; ++rate_index) {
int sample_rate = sample_rates[rate_index];
// Loop through all frame sizes between 10 and 60 ms.
for (int frame_size = 10; frame_size <= 60; frame_size += 10) {
TestParameters p;
p.frame_size = frame_size;
p.sample_rate = sample_rate;
p.num_channels = 2;
l.push_back(p);
if (sample_rate == 8000) {
// Add a five-channel test for 8000 Hz.
p.num_channels = 5;
l.push_back(p);
}
}
}
return l;
}
// Pretty-printing the test parameters in case of an error.
void PrintTo(const TestParameters& p, ::std::ostream* os) {
*os << "{frame_size = " << p.frame_size
<< ", num_channels = " << p.num_channels
<< ", sample_rate = " << p.sample_rate << "}";
}
// Instantiate the tests. Each test is instantiated using the function above,
// so that all different parameter combinations are tested.
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestNoJitter,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestPositiveDrift,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestNegativeDrift,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestDelays,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestLosses,
::testing::ValuesIn(GetTestParameters()));
INSTANTIATE_TEST_SUITE_P(MultiChannel,
NetEqStereoTestSingleActiveChannelPlc,
::testing::ValuesIn(GetTestParameters()));
} // namespace webrtc
|