File: red_payload_splitter_unittest.cc

package info (click to toggle)
chromium 138.0.7204.183-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 6,071,908 kB
  • sloc: cpp: 34,937,088; ansic: 7,176,967; javascript: 4,110,704; python: 1,419,953; asm: 946,768; xml: 739,971; pascal: 187,324; sh: 89,623; perl: 88,663; objc: 79,944; sql: 50,304; cs: 41,786; fortran: 24,137; makefile: 21,806; php: 13,980; tcl: 13,166; yacc: 8,925; ruby: 7,485; awk: 3,720; lisp: 3,096; lex: 1,327; ada: 727; jsp: 228; sed: 36
file content (398 lines) | stat: -rw-r--r-- 15,609 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
/*
 *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

// Unit tests for RedPayloadSplitter class.

#include "modules/audio_coding/neteq/red_payload_splitter.h"

#include <cstddef>
#include <cstdint>
#include <cstring>
#include <optional>
#include <utility>  // pair

#include "api/audio_codecs/audio_format.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "api/make_ref_counted.h"
#include "modules/audio_coding/neteq/decoder_database.h"
#include "modules/audio_coding/neteq/packet.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "test/gtest.h"
#include "test/mock_audio_decoder_factory.h"

using ::testing::Return;
using ::testing::ReturnNull;

namespace webrtc {

static const int kRedPayloadType = 100;
static const size_t kPayloadLength = 10;
static const uint16_t kSequenceNumber = 0;
static const uint32_t kBaseTimestamp = 0x12345678;

// A possible Opus packet that contains FEC is the following.
// The frame is 20 ms in duration.
//
// 0                   1                   2                   3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x|                             |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                             |
// |                    Compressed frame 1 (N-2 bytes)...          :
// :                                                               |
// |                                                               |
// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
void CreateOpusFecPayload(uint8_t* payload,
                          size_t payload_length,
                          uint8_t payload_value) {
  if (payload_length < 2) {
    return;
  }
  payload[0] = 0x08;
  payload[1] = 0x40;
  memset(&payload[2], payload_value, payload_length - 2);
}

// RED headers (according to RFC 2198):
//
//    0                   1                   2                   3
//    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//   |F|   block PT  |  timestamp offset         |   block length    |
//   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
//
// Last RED header:
//    0 1 2 3 4 5 6 7
//   +-+-+-+-+-+-+-+-+
//   |0|   Block PT  |
//   +-+-+-+-+-+-+-+-+

// Creates a RED packet, with `num_payloads` payloads, with payload types given
// by the values in array `payload_types` (which must be of length
// `num_payloads`). Each redundant payload is `timestamp_offset` samples
// "behind" the the previous payload.
Packet CreateRedPayload(size_t num_payloads,
                        uint8_t* payload_types,
                        int timestamp_offset,
                        bool embed_opus_fec = false) {
  Packet packet;
  packet.payload_type = kRedPayloadType;
  packet.timestamp = kBaseTimestamp;
  packet.sequence_number = kSequenceNumber;
  packet.payload.SetSize((kPayloadLength + 1) +
                         (num_payloads - 1) *
                             (kPayloadLength + kRedHeaderLength));
  uint8_t* payload_ptr = packet.payload.data();
  for (size_t i = 0; i < num_payloads; ++i) {
    // Write the RED headers.
    if (i == num_payloads - 1) {
      // Special case for last payload.
      *payload_ptr = payload_types[i] & 0x7F;  // F = 0;
      ++payload_ptr;
      break;
    }
    *payload_ptr = payload_types[i] & 0x7F;
    // Not the last block; set F = 1.
    *payload_ptr |= 0x80;
    ++payload_ptr;
    int this_offset =
        checked_cast<int>((num_payloads - i - 1) * timestamp_offset);
    *payload_ptr = this_offset >> 6;
    ++payload_ptr;
    RTC_DCHECK_LE(kPayloadLength, 1023);  // Max length described by 10 bits.
    *payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8);
    ++payload_ptr;
    *payload_ptr = kPayloadLength & 0xFF;
    ++payload_ptr;
  }
  for (size_t i = 0; i < num_payloads; ++i) {
    // Write `i` to all bytes in each payload.
    if (embed_opus_fec) {
      CreateOpusFecPayload(payload_ptr, kPayloadLength,
                           static_cast<uint8_t>(i));
    } else {
      memset(payload_ptr, static_cast<int>(i), kPayloadLength);
    }
    payload_ptr += kPayloadLength;
  }
  return packet;
}

// Create a packet with all payload bytes set to `payload_value`.
Packet CreatePacket(uint8_t payload_type,
                    size_t payload_length,
                    uint8_t payload_value,
                    bool opus_fec = false) {
  Packet packet;
  packet.payload_type = payload_type;
  packet.timestamp = kBaseTimestamp;
  packet.sequence_number = kSequenceNumber;
  packet.payload.SetSize(payload_length);
  if (opus_fec) {
    CreateOpusFecPayload(packet.payload.data(), packet.payload.size(),
                         payload_value);
  } else {
    memset(packet.payload.data(), payload_value, packet.payload.size());
  }
  return packet;
}

// Checks that `packet` has the attributes given in the remaining parameters.
void VerifyPacket(const Packet& packet,
                  size_t payload_length,
                  uint8_t payload_type,
                  uint16_t sequence_number,
                  uint32_t timestamp,
                  uint8_t payload_value,
                  Packet::Priority priority) {
  EXPECT_EQ(payload_length, packet.payload.size());
  EXPECT_EQ(payload_type, packet.payload_type);
  EXPECT_EQ(sequence_number, packet.sequence_number);
  EXPECT_EQ(timestamp, packet.timestamp);
  EXPECT_EQ(priority, packet.priority);
  ASSERT_FALSE(packet.payload.empty());
  for (size_t i = 0; i < packet.payload.size(); ++i) {
    ASSERT_EQ(payload_value, packet.payload.data()[i]);
  }
}

void VerifyPacket(const Packet& packet,
                  size_t payload_length,
                  uint8_t payload_type,
                  uint16_t sequence_number,
                  uint32_t timestamp,
                  uint8_t payload_value,
                  bool primary) {
  return VerifyPacket(packet, payload_length, payload_type, sequence_number,
                      timestamp, payload_value,
                      Packet::Priority{0, primary ? 0 : 1});
}

// Start of test definitions.

TEST(RedPayloadSplitter, CreateAndDestroy) {
  RedPayloadSplitter* splitter = new RedPayloadSplitter;
  delete splitter;
}

// Packet A is split into A1 and A2.
TEST(RedPayloadSplitter, OnePacketTwoPayloads) {
  uint8_t payload_types[] = {0, 0};
  const int kTimestampOffset = 160;
  PacketList packet_list;
  packet_list.push_back(CreateRedPayload(2, payload_types, kTimestampOffset));
  RedPayloadSplitter splitter;
  EXPECT_TRUE(splitter.SplitRed(&packet_list));
  ASSERT_EQ(2u, packet_list.size());
  // Check first packet. The first in list should always be the primary payload.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
               kSequenceNumber, kBaseTimestamp, 1, true);
  packet_list.pop_front();
  // Check second packet.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber, kBaseTimestamp - kTimestampOffset, 0, false);
}

// Packets A and B are not split at all. Only the RED header in each packet is
// removed.
TEST(RedPayloadSplitter, TwoPacketsOnePayload) {
  uint8_t payload_types[] = {0};
  const int kTimestampOffset = 160;
  // Create first packet, with a single RED payload.
  PacketList packet_list;
  packet_list.push_back(CreateRedPayload(1, payload_types, kTimestampOffset));
  // Create second packet, with a single RED payload.
  {
    Packet packet = CreateRedPayload(1, payload_types, kTimestampOffset);
    // Manually change timestamp and sequence number of second packet.
    packet.timestamp += kTimestampOffset;
    packet.sequence_number++;
    packet_list.push_back(std::move(packet));
  }
  RedPayloadSplitter splitter;
  EXPECT_TRUE(splitter.SplitRed(&packet_list));
  ASSERT_EQ(2u, packet_list.size());
  // Check first packet.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber, kBaseTimestamp, 0, true);
  packet_list.pop_front();
  // Check second packet.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 0, true);
}

// Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with
// attributes as follows:
//
//                  A1*   A2    A3    B1*   B2    B3
// Payload type     0     1     2     0     1     2
// Timestamp        b     b-o   b-2o  b+o   b     b-o
// Sequence number  0     0     0     1     1     1
//
// b = kBaseTimestamp, o = kTimestampOffset, * = primary.
TEST(RedPayloadSplitter, TwoPacketsThreePayloads) {
  uint8_t payload_types[] = {2, 1, 0};  // Primary is the last one.
  const int kTimestampOffset = 160;
  // Create first packet, with 3 RED payloads.
  PacketList packet_list;
  packet_list.push_back(CreateRedPayload(3, payload_types, kTimestampOffset));
  // Create first packet, with 3 RED payloads.
  {
    Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset);
    // Manually change timestamp and sequence number of second packet.
    packet.timestamp += kTimestampOffset;
    packet.sequence_number++;
    packet_list.push_back(std::move(packet));
  }
  RedPayloadSplitter splitter;
  EXPECT_TRUE(splitter.SplitRed(&packet_list));
  ASSERT_EQ(6u, packet_list.size());
  // Check first packet, A1.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2],
               kSequenceNumber, kBaseTimestamp, 2, {0, 0});
  packet_list.pop_front();
  // Check second packet, A2.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
               kSequenceNumber, kBaseTimestamp - kTimestampOffset, 1, {0, 1});
  packet_list.pop_front();
  // Check third packet, A3.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0,
               {0, 2});
  packet_list.pop_front();
  // Check fourth packet, B1.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[2],
               kSequenceNumber + 1, kBaseTimestamp + kTimestampOffset, 2,
               {0, 0});
  packet_list.pop_front();
  // Check fifth packet, B2.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[1],
               kSequenceNumber + 1, kBaseTimestamp, 1, {0, 1});
  packet_list.pop_front();
  // Check sixth packet, B3.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber + 1, kBaseTimestamp - kTimestampOffset, 0,
               {0, 2});
}

// Creates a list with 4 packets with these payload types:
// 0 = CNGnb
// 1 = PCMu
// 2 = DTMF (AVT)
// 3 = PCMa
// We expect the method CheckRedPayloads to discard the PCMa packet, since it
// is a non-CNG, non-DTMF payload of another type than the first speech payload
// found in the list (which is PCMu).
TEST(RedPayloadSplitter, CheckRedPayloads) {
  const Environment env = CreateEnvironment();
  PacketList packet_list;
  for (uint8_t i = 0; i <= 3; ++i) {
    // Create packet with payload type `i`, payload length 10 bytes, all 0.
    packet_list.push_back(CreatePacket(i, 10, 0));
  }

  // Use a real DecoderDatabase object here instead of a mock, since it is
  // easier to just register the payload types and let the actual implementation
  // do its job.
  DecoderDatabase decoder_database(
      env, make_ref_counted<MockAudioDecoderFactory>(), std::nullopt);
  decoder_database.RegisterPayload(0, SdpAudioFormat("cn", 8000, 1));
  decoder_database.RegisterPayload(1, SdpAudioFormat("pcmu", 8000, 1));
  decoder_database.RegisterPayload(2,
                                   SdpAudioFormat("telephone-event", 8000, 1));
  decoder_database.RegisterPayload(1, SdpAudioFormat("pcma", 8000, 1));

  RedPayloadSplitter splitter;
  splitter.CheckRedPayloads(&packet_list, decoder_database);

  ASSERT_EQ(3u, packet_list.size());  // Should have dropped the last packet.
  // Verify packets. The loop verifies that payload types 0, 1, and 2 are in the
  // list.
  for (int i = 0; i <= 2; ++i) {
    VerifyPacket(packet_list.front(), 10, i, kSequenceNumber, kBaseTimestamp, 0,
                 true);
    packet_list.pop_front();
  }
  EXPECT_TRUE(packet_list.empty());
}

// This test creates a RED packet where the payloads also have the payload type
// for RED. That is, some kind of weird nested RED packet. This is not supported
// and the splitter should discard all packets.
TEST(RedPayloadSplitter, CheckRedPayloadsRecursiveRed) {
  const Environment env = CreateEnvironment();
  PacketList packet_list;
  for (uint8_t i = 0; i <= 3; ++i) {
    // Create packet with RED payload type, payload length 10 bytes, all 0.
    packet_list.push_back(CreatePacket(kRedPayloadType, 10, 0));
  }

  // Use a real DecoderDatabase object here instead of a mock, since it is
  // easier to just register the payload types and let the actual implementation
  // do its job.
  DecoderDatabase decoder_database(
      env, make_ref_counted<MockAudioDecoderFactory>(), std::nullopt);
  decoder_database.RegisterPayload(kRedPayloadType,
                                   SdpAudioFormat("red", 8000, 1));

  RedPayloadSplitter splitter;
  splitter.CheckRedPayloads(&packet_list, decoder_database);

  EXPECT_TRUE(packet_list.empty());  // Should have dropped all packets.
}

// Packet A is split into A1, A2 and A3. But the length parameter is off, so
// the last payloads should be discarded.
TEST(RedPayloadSplitter, WrongPayloadLength) {
  uint8_t payload_types[] = {0, 0, 0};
  const int kTimestampOffset = 160;
  PacketList packet_list;
  {
    Packet packet = CreateRedPayload(3, payload_types, kTimestampOffset);
    // Manually tamper with the payload length of the packet.
    // This is one byte too short for the second payload (out of three).
    // We expect only the first payload to be returned.
    packet.payload.SetSize(packet.payload.size() - (kPayloadLength + 1));
    packet_list.push_back(std::move(packet));
  }
  RedPayloadSplitter splitter;
  EXPECT_FALSE(splitter.SplitRed(&packet_list));
  ASSERT_EQ(1u, packet_list.size());
  // Check first packet.
  VerifyPacket(packet_list.front(), kPayloadLength, payload_types[0],
               kSequenceNumber, kBaseTimestamp - 2 * kTimestampOffset, 0,
               {0, 2});
  packet_list.pop_front();
}

// Test that we reject packets too short to contain a RED header.
TEST(RedPayloadSplitter, RejectsIncompleteHeaders) {
  RedPayloadSplitter splitter;

  uint8_t payload_types[] = {0, 0};
  const int kTimestampOffset = 160;

  PacketList packet_list;

  // Truncate the packet such that the first block can not be parsed.
  packet_list.push_back(CreateRedPayload(2, payload_types, kTimestampOffset));
  packet_list.front().payload.SetSize(4);
  EXPECT_FALSE(splitter.SplitRed(&packet_list));
  EXPECT_FALSE(packet_list.empty());

  // Truncate the packet such that the first block can not be parsed.
  packet_list.front().payload.SetSize(3);
  EXPECT_FALSE(splitter.SplitRed(&packet_list));
  EXPECT_FALSE(packet_list.empty());
}

}  // namespace webrtc