1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <fstream>
#include <ios>
#include <limits>
#include <ostream> // no-presubmit-check TODO(webrtc:8982)
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/string_view.h"
#include "api/audio/audio_frame.h"
#include "api/neteq/neteq.h"
#include "api/rtp_packet_info.h"
#include "modules/audio_coding/neteq/tools/neteq_input.h"
#include "rtc_base/checks.h"
#include "rtc_base/numerics/sequence_number_unwrapper.h"
namespace webrtc {
namespace test {
namespace {
constexpr char kArrivalDelayX[] = "arrival_delay_x";
constexpr char kArrivalDelayY[] = "arrival_delay_y";
constexpr char kTargetDelayX[] = "target_delay_x";
constexpr char kTargetDelayY[] = "target_delay_y";
constexpr char kPlayoutDelayX[] = "playout_delay_x";
constexpr char kPlayoutDelayY[] = "playout_delay_y";
// Helper function for NetEqDelayAnalyzer::CreateGraphs. Returns the
// interpolated value of a function at the point x. Vector x_vec contains the
// sample points, and y_vec contains the function values at these points. The
// return value is a linear interpolation between y_vec values.
double LinearInterpolate(double x,
const std::vector<int64_t>& x_vec,
const std::vector<int64_t>& y_vec) {
// Find first element which is larger than x.
auto it = std::upper_bound(x_vec.begin(), x_vec.end(), x);
if (it == x_vec.end()) {
--it;
}
const size_t upper_ix = it - x_vec.begin();
size_t lower_ix;
if (upper_ix == 0 || x_vec[upper_ix] <= x) {
lower_ix = upper_ix;
} else {
lower_ix = upper_ix - 1;
}
double y;
if (lower_ix == upper_ix) {
y = y_vec[lower_ix];
} else {
RTC_DCHECK_NE(x_vec[lower_ix], x_vec[upper_ix]);
y = (x - x_vec[lower_ix]) * (y_vec[upper_ix] - y_vec[lower_ix]) /
(x_vec[upper_ix] - x_vec[lower_ix]) +
y_vec[lower_ix];
}
return y;
}
void PrintDelays(const NetEqDelayAnalyzer::Delays& delays,
int64_t ref_time_ms,
absl::string_view var_name_x,
absl::string_view var_name_y,
std::ofstream& output,
absl::string_view terminator = "") {
output << var_name_x << " = [ ";
for (const std::pair<int64_t, float>& delay : delays) {
output << (delay.first - ref_time_ms) / 1000.f << ", ";
}
output << "]" << terminator << std::endl;
output << var_name_y << " = [ ";
for (const std::pair<int64_t, float>& delay : delays) {
output << delay.second << ", ";
}
output << "]" << terminator << std::endl;
}
} // namespace
void NetEqDelayAnalyzer::AfterInsertPacket(
const test::NetEqInput::PacketData& packet,
NetEq* /* neteq */) {
data_.insert(
std::make_pair(packet.header.timestamp, TimingData(packet.time_ms)));
ssrcs_.insert(packet.header.ssrc);
payload_types_.insert(packet.header.payloadType);
}
void NetEqDelayAnalyzer::BeforeGetAudio(NetEq* neteq) {
last_sync_buffer_ms_ = neteq->SyncBufferSizeMs();
}
void NetEqDelayAnalyzer::AfterGetAudio(int64_t time_now_ms,
const AudioFrame& audio_frame,
bool /*muted*/,
NetEq* neteq) {
get_audio_time_ms_.push_back(time_now_ms);
for (const RtpPacketInfo& info : audio_frame.packet_infos_) {
auto it = data_.find(info.rtp_timestamp());
if (it == data_.end()) {
// This is a packet that was split out from another packet. Skip it.
continue;
}
auto& it_timing = it->second;
RTC_CHECK(!it_timing.decode_get_audio_count)
<< "Decode time already written";
it_timing.decode_get_audio_count = get_audio_count_;
RTC_CHECK(!it_timing.sync_delay_ms) << "Decode time already written";
it_timing.sync_delay_ms = last_sync_buffer_ms_;
it_timing.target_delay_ms = neteq->TargetDelayMs();
it_timing.current_delay_ms = neteq->FilteredCurrentDelayMs();
}
last_sample_rate_hz_ = audio_frame.sample_rate_hz_;
++get_audio_count_;
}
void NetEqDelayAnalyzer::CreateGraphs(Delays* arrival_delay_ms,
Delays* corrected_arrival_delay_ms,
Delays* playout_delay_ms,
Delays* target_delay_ms) const {
if (get_audio_time_ms_.empty()) {
return;
}
// Create nominal_get_audio_time_ms, a vector starting at
// get_audio_time_ms_[0] and increasing by 10 for each element.
std::vector<int64_t> nominal_get_audio_time_ms(get_audio_time_ms_.size());
nominal_get_audio_time_ms[0] = get_audio_time_ms_[0];
std::transform(
nominal_get_audio_time_ms.begin(), nominal_get_audio_time_ms.end() - 1,
nominal_get_audio_time_ms.begin() + 1, [](int64_t& x) { return x + 10; });
RTC_DCHECK(
std::is_sorted(get_audio_time_ms_.begin(), get_audio_time_ms_.end()));
std::vector<double> rtp_timestamps_ms;
double offset = std::numeric_limits<double>::max();
RtpTimestampUnwrapper unwrapper;
// This loop traverses data_ and populates rtp_timestamps_ms as well as
// calculates the base offset.
for (auto& d : data_) {
rtp_timestamps_ms.push_back(static_cast<double>(unwrapper.Unwrap(d.first)) /
CheckedDivExact(last_sample_rate_hz_, 1000));
offset =
std::min(offset, d.second.arrival_time_ms - rtp_timestamps_ms.back());
}
// This loop traverses the data again and populates the graph vectors. The
// reason to have two loops and traverse twice is that the offset cannot be
// known until the first traversal is done. Meanwhile, the final offset must
// be known already at the start of this second loop.
size_t i = 0;
for (const auto& data : data_) {
const double offset_send_time_ms = rtp_timestamps_ms[i++] + offset;
const auto& timing = data.second;
corrected_arrival_delay_ms->push_back(std::make_pair(
timing.arrival_time_ms,
LinearInterpolate(timing.arrival_time_ms, get_audio_time_ms_,
nominal_get_audio_time_ms) -
offset_send_time_ms));
arrival_delay_ms->push_back(std::make_pair(
timing.arrival_time_ms, timing.arrival_time_ms - offset_send_time_ms));
if (timing.decode_get_audio_count) {
// This packet was decoded.
RTC_DCHECK(timing.sync_delay_ms);
const int64_t get_audio_time =
*timing.decode_get_audio_count * 10 + get_audio_time_ms_[0];
const float playout_ms =
get_audio_time + *timing.sync_delay_ms - offset_send_time_ms;
playout_delay_ms->push_back(std::make_pair(get_audio_time, playout_ms));
RTC_DCHECK(timing.target_delay_ms);
RTC_DCHECK(timing.current_delay_ms);
const float target =
playout_ms - *timing.current_delay_ms + *timing.target_delay_ms;
target_delay_ms->push_back(std::make_pair(get_audio_time, target));
}
}
}
void NetEqDelayAnalyzer::CreateMatlabScript(
absl::string_view script_name) const {
Delays arrival_delay_ms;
Delays corrected_arrival_delay_ms;
Delays playout_delay_ms;
Delays target_delay_ms;
CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms,
&playout_delay_ms, &target_delay_ms);
// Maybe better to find the actually smallest timestamp, to surely avoid
// x-axis starting from negative.
const int64_t ref_time_ms = arrival_delay_ms.front().first;
// Create an output file stream to Matlab script file.
std::ofstream output(std::string{script_name});
PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX,
kArrivalDelayY, output, ";");
// PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX,
// kCorrectedArrivalDelayY, output);
PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY,
output, ";");
PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY,
output, ";");
output << "h=plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", "
<< kTargetDelayX << ", " << kTargetDelayY << ", 'g.', "
<< kPlayoutDelayX << ", " << kPlayoutDelayY << ");" << std::endl;
output << "set(h(1),'color',0.75*[1 1 1]);" << std::endl;
output << "set(h(2),'markersize',6);" << std::endl;
output << "set(h(3),'linew',1.5);" << std::endl;
output << "ax1=axis;" << std::endl;
output << "axis tight" << std::endl;
output << "ax2=axis;" << std::endl;
output << "axis([ax2(1:3) ax1(4)])" << std::endl;
output << "xlabel('time [s]');" << std::endl;
output << "ylabel('relative delay [ms]');" << std::endl;
if (!ssrcs_.empty()) {
auto ssrc_it = ssrcs_.cbegin();
output << "title('SSRC: 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
while (ssrc_it != ssrcs_.end()) {
output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
}
output << std::dec;
auto pt_it = payload_types_.cbegin();
output << "; Payload Types: " << *pt_it++;
while (pt_it != payload_types_.end()) {
output << ", " << *pt_it++;
}
output << "');" << std::endl;
}
}
void NetEqDelayAnalyzer::CreatePythonScript(
absl::string_view script_name) const {
Delays arrival_delay_ms;
Delays corrected_arrival_delay_ms;
Delays playout_delay_ms;
Delays target_delay_ms;
CreateGraphs(&arrival_delay_ms, &corrected_arrival_delay_ms,
&playout_delay_ms, &target_delay_ms);
// Maybe better to find the actually smallest timestamp, to surely avoid
// x-axis starting from negative.
const int64_t ref_time_ms = arrival_delay_ms.front().first;
// Create an output file stream to the python script file.
std::ofstream output(std::string{script_name});
// Necessary includes
output << "import numpy as np" << std::endl;
output << "import matplotlib.pyplot as plt" << std::endl;
PrintDelays(corrected_arrival_delay_ms, ref_time_ms, kArrivalDelayX,
kArrivalDelayY, output);
// PrintDelays(corrected_arrival_delay_x, kCorrectedArrivalDelayX,
// kCorrectedArrivalDelayY, output);
PrintDelays(playout_delay_ms, ref_time_ms, kPlayoutDelayX, kPlayoutDelayY,
output);
PrintDelays(target_delay_ms, ref_time_ms, kTargetDelayX, kTargetDelayY,
output);
output << "if __name__ == '__main__':" << std::endl;
output << " h=plt.plot(" << kArrivalDelayX << ", " << kArrivalDelayY << ", "
<< kTargetDelayX << ", " << kTargetDelayY << ", 'g.', "
<< kPlayoutDelayX << ", " << kPlayoutDelayY << ")" << std::endl;
output << " plt.setp(h[0],'color',[.75, .75, .75])" << std::endl;
output << " plt.setp(h[1],'markersize',6)" << std::endl;
output << " plt.setp(h[2],'linewidth',1.5)" << std::endl;
output << " plt.axis('tight')" << std::endl;
output << " plt.xlabel('time [s]')" << std::endl;
output << " plt.ylabel('relative delay [ms]')" << std::endl;
if (!ssrcs_.empty()) {
auto ssrc_it = ssrcs_.cbegin();
output << " plt.legend((\"arrival delay\", \"target delay\", \"playout "
"delay\"))"
<< std::endl;
output << " plt.title('SSRC: 0x" << std::hex
<< static_cast<int64_t>(*ssrc_it++);
while (ssrc_it != ssrcs_.end()) {
output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++);
}
output << std::dec;
auto pt_it = payload_types_.cbegin();
output << "; Payload Types: " << *pt_it++;
while (pt_it != payload_types_.end()) {
output << ", " << *pt_it++;
}
output << "')" << std::endl;
}
output << " plt.show()" << std::endl;
}
} // namespace test
} // namespace webrtc
|