1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
|
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_device/audio_device_buffer.h"
#include <string.h>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
static const char kTimerQueueName[] = "AudioDeviceBufferTimer";
// Time between two sucessive calls to LogStats().
static const size_t kTimerIntervalInSeconds = 10;
static const size_t kTimerIntervalInMilliseconds =
kTimerIntervalInSeconds * kNumMillisecsPerSec;
// Min time required to qualify an audio session as a "call". If playout or
// recording has been active for less than this time we will not store any
// logs or UMA stats but instead consider the call as too short.
static const size_t kMinValidCallTimeTimeInSeconds = 10;
static const size_t kMinValidCallTimeTimeInMilliseconds =
kMinValidCallTimeTimeInSeconds * kNumMillisecsPerSec;
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
static const double k2Pi = 6.28318530717959;
#endif
AudioDeviceBuffer::AudioDeviceBuffer(TaskQueueFactory* task_queue_factory,
bool create_detached)
: task_queue_(task_queue_factory->CreateTaskQueue(
kTimerQueueName,
TaskQueueFactory::Priority::NORMAL)),
audio_transport_cb_(nullptr),
rec_sample_rate_(0),
play_sample_rate_(0),
rec_channels_(0),
play_channels_(0),
playing_(false),
recording_(false),
typing_status_(false),
play_delay_ms_(0),
rec_delay_ms_(0),
num_stat_reports_(0),
last_timer_task_time_(0),
rec_stat_count_(0),
play_stat_count_(0),
play_start_time_(0),
only_silence_recorded_(true),
log_stats_(false) {
RTC_LOG(LS_INFO) << "AudioDeviceBuffer::ctor";
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
phase_ = 0.0;
RTC_LOG(LS_WARNING) << "AUDIO_DEVICE_PLAYS_SINUS_TONE is defined!";
#endif
if (create_detached) {
main_thread_checker_.Detach();
}
}
AudioDeviceBuffer::~AudioDeviceBuffer() {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
RTC_DCHECK(!playing_);
RTC_DCHECK(!recording_);
RTC_LOG(LS_INFO) << "AudioDeviceBuffer::~dtor";
// Delete and and thus stop task queue before deleting other members to avoid
// race with running tasks. Even though !playing_ and !recording_ called
// StopPeriodicLogging, such stop is asynchronous and may race with the
// AudioDeviceBuffer destructor. In particular there might be regular LogStats
// that attempts to repost task to the task_queue_.
// Thus task_queue_ should be deleted before pointer to it is invalidated.
// std::unique_ptr destructor does the same two operations in reverse order as
// it doesn't expect member would be used after its destruction has started.
task_queue_.get_deleter()(task_queue_.get());
task_queue_.release();
}
int32_t AudioDeviceBuffer::RegisterAudioCallback(
AudioTransport* audio_callback) {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
RTC_DLOG(LS_INFO) << __FUNCTION__;
if (playing_ || recording_) {
RTC_LOG(LS_ERROR) << "Failed to set audio transport since media was active";
return -1;
}
audio_transport_cb_ = audio_callback;
return 0;
}
void AudioDeviceBuffer::StartPlayout() {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
// TODO(henrika): allow for usage of DCHECK(!playing_) here instead. Today the
// ADM allows calling Start(), Start() by ignoring the second call but it
// makes more sense to only allow one call.
if (playing_) {
return;
}
RTC_DLOG(LS_INFO) << __FUNCTION__;
// Clear members tracking playout stats and do it on the task queue.
task_queue_->PostTask([this] { ResetPlayStats(); });
// Start a periodic timer based on task queue if not already done by the
// recording side.
if (!recording_) {
StartPeriodicLogging();
}
const int64_t now_time = TimeMillis();
// Clear members that are only touched on the main (creating) thread.
play_start_time_ = now_time;
playing_ = true;
}
void AudioDeviceBuffer::StartRecording() {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (recording_) {
return;
}
RTC_DLOG(LS_INFO) << __FUNCTION__;
// Clear members tracking recording stats and do it on the task queue.
task_queue_->PostTask([this] { ResetRecStats(); });
// Start a periodic timer based on task queue if not already done by the
// playout side.
if (!playing_) {
StartPeriodicLogging();
}
// Clear members that will be touched on the main (creating) thread.
rec_start_time_ = TimeMillis();
recording_ = true;
// And finally a member which can be modified on the native audio thread.
// It is safe to do so since we know by design that the owning ADM has not
// yet started the native audio recording.
only_silence_recorded_ = true;
}
void AudioDeviceBuffer::StopPlayout() {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (!playing_) {
return;
}
RTC_DLOG(LS_INFO) << __FUNCTION__;
playing_ = false;
// Stop periodic logging if no more media is active.
if (!recording_) {
StopPeriodicLogging();
}
RTC_LOG(LS_INFO) << "total playout time: " << TimeSince(play_start_time_);
}
void AudioDeviceBuffer::StopRecording() {
RTC_DCHECK_RUN_ON(&main_thread_checker_);
if (!recording_) {
return;
}
RTC_DLOG(LS_INFO) << __FUNCTION__;
recording_ = false;
// Stop periodic logging if no more media is active.
if (!playing_) {
StopPeriodicLogging();
}
// Add UMA histogram to keep track of the case when only zeros have been
// recorded. Measurements (max of absolute level) are taken twice per second,
// which means that if e.g 10 seconds of audio has been recorded, a total of
// 20 level estimates must all be identical to zero to trigger the histogram.
// `only_silence_recorded_` can only be cleared on the native audio thread
// that drives audio capture but we know by design that the audio has stopped
// when this method is called, hence there should not be aby conflicts. Also,
// the fact that `only_silence_recorded_` can be affected during the complete
// call makes chances of conflicts with potentially one last callback very
// small.
const size_t time_since_start = TimeSince(rec_start_time_);
if (time_since_start > kMinValidCallTimeTimeInMilliseconds) {
const int only_zeros = static_cast<int>(only_silence_recorded_);
RTC_HISTOGRAM_BOOLEAN("WebRTC.Audio.RecordedOnlyZeros", only_zeros);
RTC_LOG(LS_INFO) << "HISTOGRAM(WebRTC.Audio.RecordedOnlyZeros): "
<< only_zeros;
}
RTC_LOG(LS_INFO) << "total recording time: " << time_since_start;
}
int32_t AudioDeviceBuffer::SetRecordingSampleRate(uint32_t fsHz) {
RTC_LOG(LS_INFO) << "SetRecordingSampleRate(" << fsHz << ")";
rec_sample_rate_ = fsHz;
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutSampleRate(uint32_t fsHz) {
RTC_LOG(LS_INFO) << "SetPlayoutSampleRate(" << fsHz << ")";
play_sample_rate_ = fsHz;
return 0;
}
uint32_t AudioDeviceBuffer::RecordingSampleRate() const {
return rec_sample_rate_;
}
uint32_t AudioDeviceBuffer::PlayoutSampleRate() const {
return play_sample_rate_;
}
int32_t AudioDeviceBuffer::SetRecordingChannels(size_t channels) {
RTC_LOG(LS_INFO) << "SetRecordingChannels(" << channels << ")";
rec_channels_ = channels;
return 0;
}
int32_t AudioDeviceBuffer::SetPlayoutChannels(size_t channels) {
RTC_LOG(LS_INFO) << "SetPlayoutChannels(" << channels << ")";
play_channels_ = channels;
return 0;
}
size_t AudioDeviceBuffer::RecordingChannels() const {
return rec_channels_;
}
size_t AudioDeviceBuffer::PlayoutChannels() const {
return play_channels_;
}
int32_t AudioDeviceBuffer::SetTypingStatus(bool typing_status) {
typing_status_ = typing_status;
return 0;
}
void AudioDeviceBuffer::SetVQEData(int play_delay_ms, int rec_delay_ms) {
play_delay_ms_ = play_delay_ms;
rec_delay_ms_ = rec_delay_ms;
}
int32_t AudioDeviceBuffer::SetRecordedBuffer(const void* audio_buffer,
size_t samples_per_channel) {
return SetRecordedBuffer(audio_buffer, samples_per_channel, std::nullopt);
}
int32_t AudioDeviceBuffer::SetRecordedBuffer(
const void* audio_buffer,
size_t samples_per_channel,
std::optional<int64_t> capture_timestamp_ns) {
// Copy the complete input buffer to the local buffer.
const size_t old_size = rec_buffer_.size();
rec_buffer_.SetData(static_cast<const int16_t*>(audio_buffer),
rec_channels_ * samples_per_channel);
// Keep track of the size of the recording buffer. Only updated when the
// size changes, which is a rare event.
if (old_size != rec_buffer_.size()) {
RTC_LOG(LS_INFO) << "Size of recording buffer: " << rec_buffer_.size();
}
if (capture_timestamp_ns) {
int64_t align_offsync_estimation_time = TimeMicros();
if (align_offsync_estimation_time - TimestampAligner::kMinFrameIntervalUs >
align_offsync_estimation_time_) {
align_offsync_estimation_time_ = align_offsync_estimation_time;
capture_timestamp_ns_ =
kNumNanosecsPerMicrosec *
timestamp_aligner_.TranslateTimestamp(
*capture_timestamp_ns / kNumNanosecsPerMicrosec,
align_offsync_estimation_time);
} else {
// The Timestamp aligner is designed to prevent timestamps that are too
// similar, and produces warnings if it is called to often. We do not care
// about that here, so we do this workaround. If we where to call the
// aligner within a millisecond, we instead call this, that do not update
// the clock offset estimation. This get us timestamps without generating
// warnings, but could generate two timestamps within a millisecond.
capture_timestamp_ns_ =
kNumNanosecsPerMicrosec *
timestamp_aligner_.TranslateTimestamp(*capture_timestamp_ns /
kNumNanosecsPerMicrosec);
}
}
// Derive a new level value twice per second and check if it is non-zero.
int16_t max_abs = 0;
RTC_DCHECK_LT(rec_stat_count_, 50);
if (++rec_stat_count_ >= 50) {
// Returns the largest absolute value in a signed 16-bit vector.
max_abs = WebRtcSpl_MaxAbsValueW16(rec_buffer_.data(), rec_buffer_.size());
rec_stat_count_ = 0;
// Set `only_silence_recorded_` to false as soon as at least one detection
// of a non-zero audio packet is found. It can only be restored to true
// again by restarting the call.
if (max_abs > 0) {
only_silence_recorded_ = false;
}
}
// Update recording stats which is used as base for periodic logging of the
// audio input state.
UpdateRecStats(max_abs, samples_per_channel);
return 0;
}
int32_t AudioDeviceBuffer::DeliverRecordedData() {
if (!audio_transport_cb_) {
RTC_LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
const size_t frames = rec_buffer_.size() / rec_channels_;
const size_t bytes_per_frame = rec_channels_ * sizeof(int16_t);
uint32_t new_mic_level_dummy = 0;
uint32_t total_delay_ms = play_delay_ms_ + rec_delay_ms_;
int32_t res = audio_transport_cb_->RecordedDataIsAvailable(
rec_buffer_.data(), frames, bytes_per_frame, rec_channels_,
rec_sample_rate_, total_delay_ms, 0, 0, typing_status_,
new_mic_level_dummy, capture_timestamp_ns_);
if (res == -1) {
RTC_LOG(LS_ERROR) << "RecordedDataIsAvailable() failed";
}
return 0;
}
int32_t AudioDeviceBuffer::RequestPlayoutData(size_t samples_per_channel) {
TRACE_EVENT1("webrtc", "AudioDeviceBuffer::RequestPlayoutData",
"samples_per_channel", samples_per_channel);
// The consumer can change the requested size on the fly and we therefore
// resize the buffer accordingly. Also takes place at the first call to this
// method.
const size_t total_samples = play_channels_ * samples_per_channel;
if (play_buffer_.size() != total_samples) {
play_buffer_.SetSize(total_samples);
RTC_LOG(LS_INFO) << "Size of playout buffer: " << play_buffer_.size();
}
size_t num_samples_out(0);
// It is currently supported to start playout without a valid audio
// transport object. Leads to warning and silence.
if (!audio_transport_cb_) {
RTC_LOG(LS_WARNING) << "Invalid audio transport";
return 0;
}
// Retrieve new 16-bit PCM audio data using the audio transport instance.
int64_t elapsed_time_ms = -1;
int64_t ntp_time_ms = -1;
const size_t bytes_per_frame = play_channels_ * sizeof(int16_t);
uint32_t res = audio_transport_cb_->NeedMorePlayData(
samples_per_channel, bytes_per_frame, play_channels_, play_sample_rate_,
play_buffer_.data(), num_samples_out, &elapsed_time_ms, &ntp_time_ms);
if (res != 0) {
RTC_LOG(LS_ERROR) << "NeedMorePlayData() failed";
}
// Derive a new level value twice per second.
int16_t max_abs = 0;
RTC_DCHECK_LT(play_stat_count_, 50);
if (++play_stat_count_ >= 50) {
// Returns the largest absolute value in a signed 16-bit vector.
max_abs =
WebRtcSpl_MaxAbsValueW16(play_buffer_.data(), play_buffer_.size());
play_stat_count_ = 0;
}
// Update playout stats which is used as base for periodic logging of the
// audio output state.
UpdatePlayStats(max_abs, num_samples_out / play_channels_);
return static_cast<int32_t>(num_samples_out / play_channels_);
}
int32_t AudioDeviceBuffer::GetPlayoutData(void* audio_buffer) {
RTC_DCHECK_GT(play_buffer_.size(), 0);
#ifdef AUDIO_DEVICE_PLAYS_SINUS_TONE
const double phase_increment =
k2Pi * 440.0 / static_cast<double>(play_sample_rate_);
int16_t* destination_r = reinterpret_cast<int16_t*>(audio_buffer);
if (play_channels_ == 1) {
for (size_t i = 0; i < play_buffer_.size(); ++i) {
destination_r[i] = static_cast<int16_t>((sin(phase_) * (1 << 14)));
phase_ += phase_increment;
}
} else if (play_channels_ == 2) {
for (size_t i = 0; i < play_buffer_.size() / 2; ++i) {
destination_r[2 * i] = destination_r[2 * i + 1] =
static_cast<int16_t>((sin(phase_) * (1 << 14)));
phase_ += phase_increment;
}
}
#else
memcpy(audio_buffer, play_buffer_.data(),
play_buffer_.size() * sizeof(int16_t));
#endif
// Return samples per channel or number of frames.
return static_cast<int32_t>(play_buffer_.size() / play_channels_);
}
void AudioDeviceBuffer::StartPeriodicLogging() {
task_queue_->PostTask([this] { LogStats(AudioDeviceBuffer::LOG_START); });
}
void AudioDeviceBuffer::StopPeriodicLogging() {
task_queue_->PostTask([this] { LogStats(AudioDeviceBuffer::LOG_STOP); });
}
void AudioDeviceBuffer::LogStats(LogState state) {
RTC_DCHECK_RUN_ON(task_queue_.get());
int64_t now_time = TimeMillis();
if (state == AudioDeviceBuffer::LOG_START) {
// Reset counters at start. We will not add any logging in this state but
// the timer will started by posting a new (delayed) task.
num_stat_reports_ = 0;
last_timer_task_time_ = now_time;
log_stats_ = true;
} else if (state == AudioDeviceBuffer::LOG_STOP) {
// Stop logging and posting new tasks.
log_stats_ = false;
} else if (state == AudioDeviceBuffer::LOG_ACTIVE) {
// Keep logging unless logging was disabled while task was posted.
}
// Avoid adding more logs since we are in STOP mode.
if (!log_stats_) {
return;
}
int64_t next_callback_time = now_time + kTimerIntervalInMilliseconds;
int64_t time_since_last = TimeDiff(now_time, last_timer_task_time_);
last_timer_task_time_ = now_time;
Stats stats;
{
MutexLock lock(&lock_);
stats = stats_;
stats_.max_rec_level = 0;
stats_.max_play_level = 0;
}
// Cache current sample rate from atomic members.
const uint32_t rec_sample_rate = rec_sample_rate_;
const uint32_t play_sample_rate = play_sample_rate_;
// Log the latest statistics but skip the first two rounds just after state
// was set to LOG_START to ensure that we have at least one full stable
// 10-second interval for sample-rate estimation. Hence, first printed log
// will be after ~20 seconds.
if (++num_stat_reports_ > 2 &&
static_cast<size_t>(time_since_last) > kTimerIntervalInMilliseconds / 2) {
uint32_t diff_samples = stats.rec_samples - last_stats_.rec_samples;
float rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0);
uint32_t abs_diff_rate_in_percent = 0;
if (rec_sample_rate > 0 && rate > 0) {
abs_diff_rate_in_percent = static_cast<uint32_t>(
0.5f +
((100.0f * std::abs(rate - rec_sample_rate)) / rec_sample_rate));
RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.RecordSampleRateOffsetInPercent",
abs_diff_rate_in_percent);
RTC_LOG(LS_INFO) << "[REC : " << time_since_last << "msec, "
<< rec_sample_rate / 1000 << "kHz] callbacks: "
<< stats.rec_callbacks - last_stats_.rec_callbacks
<< ", "
"samples: "
<< diff_samples
<< ", "
"rate: "
<< static_cast<int>(rate + 0.5)
<< ", "
"rate diff: "
<< abs_diff_rate_in_percent
<< "%, "
"level: "
<< stats.max_rec_level;
}
diff_samples = stats.play_samples - last_stats_.play_samples;
rate = diff_samples / (static_cast<float>(time_since_last) / 1000.0);
abs_diff_rate_in_percent = 0;
if (play_sample_rate > 0 && rate > 0) {
abs_diff_rate_in_percent = static_cast<uint32_t>(
0.5f +
((100.0f * std::abs(rate - play_sample_rate)) / play_sample_rate));
RTC_HISTOGRAM_PERCENTAGE("WebRTC.Audio.PlayoutSampleRateOffsetInPercent",
abs_diff_rate_in_percent);
RTC_LOG(LS_INFO) << "[PLAY: " << time_since_last << "msec, "
<< play_sample_rate / 1000 << "kHz] callbacks: "
<< stats.play_callbacks - last_stats_.play_callbacks
<< ", "
"samples: "
<< diff_samples
<< ", "
"rate: "
<< static_cast<int>(rate + 0.5)
<< ", "
"rate diff: "
<< abs_diff_rate_in_percent
<< "%, "
"level: "
<< stats.max_play_level;
}
}
last_stats_ = stats;
int64_t time_to_wait_ms = next_callback_time - TimeMillis();
RTC_DCHECK_GT(time_to_wait_ms, 0) << "Invalid timer interval";
// Keep posting new (delayed) tasks until state is changed to kLogStop.
task_queue_->PostDelayedTask(
[this] { AudioDeviceBuffer::LogStats(AudioDeviceBuffer::LOG_ACTIVE); },
TimeDelta::Millis(time_to_wait_ms));
}
void AudioDeviceBuffer::ResetRecStats() {
RTC_DCHECK_RUN_ON(task_queue_.get());
last_stats_.ResetRecStats();
MutexLock lock(&lock_);
stats_.ResetRecStats();
}
void AudioDeviceBuffer::ResetPlayStats() {
RTC_DCHECK_RUN_ON(task_queue_.get());
last_stats_.ResetPlayStats();
MutexLock lock(&lock_);
stats_.ResetPlayStats();
}
void AudioDeviceBuffer::UpdateRecStats(int16_t max_abs,
size_t samples_per_channel) {
MutexLock lock(&lock_);
++stats_.rec_callbacks;
stats_.rec_samples += samples_per_channel;
if (max_abs > stats_.max_rec_level) {
stats_.max_rec_level = max_abs;
}
}
void AudioDeviceBuffer::UpdatePlayStats(int16_t max_abs,
size_t samples_per_channel) {
MutexLock lock(&lock_);
++stats_.play_callbacks;
stats_.play_samples += samples_per_channel;
if (max_abs > stats_.max_play_level) {
stats_.max_play_level = max_abs;
}
}
} // namespace webrtc
|