1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_device/fine_audio_buffer.h"
#include <limits.h>
#include <memory>
#include "api/array_view.h"
#include "api/task_queue/default_task_queue_factory.h"
#include "modules/audio_device/mock_audio_device_buffer.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::AtLeast;
using ::testing::InSequence;
using ::testing::Return;
namespace webrtc {
const int kSampleRate = 44100;
const int kChannels = 2;
const int kSamplesPer10Ms = kSampleRate * 10 / 1000;
// The fake audio data is 0,1,..SCHAR_MAX-1,0,1,... This is to make it easy
// to detect errors. This function verifies that the buffers contain such data.
// E.g. if there are two buffers of size 3, buffer 1 would contain 0,1,2 and
// buffer 2 would contain 3,4,5. Note that SCHAR_MAX is 127 so wrap-around
// will happen.
// `buffer` is the audio buffer to verify.
bool VerifyBuffer(const int16_t* buffer, int buffer_number, int size) {
int start_value = (buffer_number * size) % SCHAR_MAX;
for (int i = 0; i < size; ++i) {
if (buffer[i] != (i + start_value) % SCHAR_MAX) {
return false;
}
}
return true;
}
// This function replaces the real AudioDeviceBuffer::GetPlayoutData when it's
// called (which is done implicitly when calling GetBufferData). It writes the
// sequence 0,1,..SCHAR_MAX-1,0,1,... to the buffer. Note that this is likely a
// buffer of different size than the one VerifyBuffer verifies.
// `iteration` is the number of calls made to UpdateBuffer prior to this call.
// `samples_per_10_ms` is the number of samples that should be written to the
// buffer (`arg0`).
ACTION_P2(UpdateBuffer, iteration, samples_per_10_ms) {
int16_t* buffer = static_cast<int16_t*>(arg0);
int start_value = (iteration * samples_per_10_ms) % SCHAR_MAX;
for (int i = 0; i < samples_per_10_ms; ++i) {
buffer[i] = (i + start_value) % SCHAR_MAX;
}
// Should return samples per channel.
return samples_per_10_ms / kChannels;
}
// Writes a periodic ramp pattern to the supplied `buffer`. See UpdateBuffer()
// for details.
void UpdateInputBuffer(int16_t* buffer, int iteration, int size) {
int start_value = (iteration * size) % SCHAR_MAX;
for (int i = 0; i < size; ++i) {
buffer[i] = (i + start_value) % SCHAR_MAX;
}
}
// Action macro which verifies that the recorded 10ms chunk of audio data
// (in `arg0`) contains the correct reference values even if they have been
// supplied using a buffer size that is smaller or larger than 10ms.
// See VerifyBuffer() for details.
ACTION_P2(VerifyInputBuffer, iteration, samples_per_10_ms) {
const int16_t* buffer = static_cast<const int16_t*>(arg0);
int start_value = (iteration * samples_per_10_ms) % SCHAR_MAX;
for (int i = 0; i < samples_per_10_ms; ++i) {
EXPECT_EQ(buffer[i], (i + start_value) % SCHAR_MAX);
}
return 0;
}
void RunFineBufferTest(int frame_size_in_samples) {
const int kFrameSizeSamples = frame_size_in_samples;
const int kNumberOfFrames = 5;
// Ceiling of integer division: 1 + ((x - 1) / y)
const int kNumberOfUpdateBufferCalls =
1 + ((kNumberOfFrames * frame_size_in_samples - 1) / kSamplesPer10Ms);
auto task_queue_factory = CreateDefaultTaskQueueFactory();
MockAudioDeviceBuffer audio_device_buffer(task_queue_factory.get());
audio_device_buffer.SetPlayoutSampleRate(kSampleRate);
audio_device_buffer.SetPlayoutChannels(kChannels);
audio_device_buffer.SetRecordingSampleRate(kSampleRate);
audio_device_buffer.SetRecordingChannels(kChannels);
EXPECT_CALL(audio_device_buffer, RequestPlayoutData(_))
.WillRepeatedly(Return(kSamplesPer10Ms));
{
InSequence s;
for (int i = 0; i < kNumberOfUpdateBufferCalls; ++i) {
EXPECT_CALL(audio_device_buffer, GetPlayoutData(_))
.WillOnce(UpdateBuffer(i, kChannels * kSamplesPer10Ms))
.RetiresOnSaturation();
}
}
{
InSequence s;
for (int j = 0; j < kNumberOfUpdateBufferCalls - 1; ++j) {
EXPECT_CALL(audio_device_buffer, SetRecordedBuffer(_, kSamplesPer10Ms, _))
.WillOnce(VerifyInputBuffer(j, kChannels * kSamplesPer10Ms))
.RetiresOnSaturation();
}
}
EXPECT_CALL(audio_device_buffer, SetVQEData(_, _))
.Times(kNumberOfUpdateBufferCalls - 1);
EXPECT_CALL(audio_device_buffer, DeliverRecordedData())
.Times(kNumberOfUpdateBufferCalls - 1)
.WillRepeatedly(Return(0));
FineAudioBuffer fine_buffer(&audio_device_buffer);
std::unique_ptr<int16_t[]> out_buffer(
new int16_t[kChannels * kFrameSizeSamples]);
std::unique_ptr<int16_t[]> in_buffer(
new int16_t[kChannels * kFrameSizeSamples]);
for (int i = 0; i < kNumberOfFrames; ++i) {
fine_buffer.GetPlayoutData(
ArrayView<int16_t>(out_buffer.get(), kChannels * kFrameSizeSamples), 0);
EXPECT_TRUE(
VerifyBuffer(out_buffer.get(), i, kChannels * kFrameSizeSamples));
UpdateInputBuffer(in_buffer.get(), i, kChannels * kFrameSizeSamples);
fine_buffer.DeliverRecordedData(
ArrayView<const int16_t>(in_buffer.get(),
kChannels * kFrameSizeSamples),
0);
}
}
TEST(FineBufferTest, BufferLessThan10ms) {
const int kFrameSizeSamples = kSamplesPer10Ms - 50;
RunFineBufferTest(kFrameSizeSamples);
}
TEST(FineBufferTest, GreaterThan10ms) {
const int kFrameSizeSamples = kSamplesPer10Ms + 50;
RunFineBufferTest(kFrameSizeSamples);
}
} // namespace webrtc
|