1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/aec_state.h"
#include "api/environment/environment.h"
#include "api/environment/environment_factory.h"
#include "modules/audio_processing/aec3/aec3_fft.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/logging/apm_data_dumper.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
void RunNormalUsageTest(size_t num_render_channels,
size_t num_capture_channels) {
// TODO(bugs.webrtc.org/10913): Test with different content in different
// channels.
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
ApmDataDumper data_dumper(42);
EchoCanceller3Config config;
AecState state(CreateEnvironment(), config, num_capture_channels);
std::optional<DelayEstimate> delay_estimate =
DelayEstimate(DelayEstimate::Quality::kRefined, 10);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels));
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(num_capture_channels);
Block x(kNumBands, num_render_channels);
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::vector<std::array<float, kBlockSize>> y(num_capture_channels);
std::vector<SubtractorOutput> subtractor_output(num_capture_channels);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].Reset();
subtractor_output[ch].s_refined.fill(100.f);
subtractor_output[ch].e_refined.fill(100.f);
y[ch].fill(1000.f);
E2_refined[ch].fill(0.f);
Y2[ch].fill(0.f);
}
Aec3Fft fft;
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
converged_filter_frequency_response(
num_capture_channels,
std::vector<std::array<float, kFftLengthBy2Plus1>>(10));
for (auto& v_ch : converged_filter_frequency_response) {
for (auto& v : v_ch) {
v.fill(0.01f);
}
}
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
diverged_filter_frequency_response = converged_filter_frequency_response;
converged_filter_frequency_response[0][2].fill(100.f);
converged_filter_frequency_response[0][2][0] = 1.f;
std::vector<std::vector<float>> impulse_response(
num_capture_channels,
std::vector<float>(
GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
// Verify that linear AEC usability is true when the filter is converged
for (size_t band = 0; band < kNumBands; ++band) {
for (size_t ch = 0; ch < num_render_channels; ++ch) {
std::fill(x.begin(band, ch), x.end(band, ch), 101.f);
}
}
for (int k = 0; k < 3000; ++k) {
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
EXPECT_TRUE(state.UsableLinearEstimate());
// Verify that linear AEC usability becomes false after an echo path
// change is reported
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.HandleEchoPathChange(EchoPathVariability(
false, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
EXPECT_FALSE(state.UsableLinearEstimate());
// Verify that the active render detection works as intended.
for (size_t ch = 0; ch < num_render_channels; ++ch) {
std::fill(x.begin(0, ch), x.end(0, ch), 101.f);
}
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.HandleEchoPathChange(EchoPathVariability(
true, EchoPathVariability::DelayAdjustment::kNewDetectedDelay, false));
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
EXPECT_FALSE(state.ActiveRender());
for (int k = 0; k < 1000; ++k) {
render_delay_buffer->Insert(x);
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
EXPECT_TRUE(state.ActiveRender());
// Verify that the ERL is properly estimated
for (int band = 0; band < x.NumBands(); ++band) {
for (int channel = 0; channel < x.NumChannels(); ++channel) {
std::fill(x.begin(band, channel), x.end(band, channel), 0.0f);
}
}
for (size_t ch = 0; ch < num_render_channels; ++ch) {
x.View(/*band=*/0, ch)[0] = 5000.f;
}
for (size_t k = 0;
k < render_delay_buffer->GetRenderBuffer()->GetFftBuffer().size(); ++k) {
render_delay_buffer->Insert(x);
if (k == 0) {
render_delay_buffer->Reset();
}
render_delay_buffer->PrepareCaptureProcessing();
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(10.f * 10000.f * 10000.f);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
const std::array<float, kFftLengthBy2Plus1>& erl = state.Erl();
EXPECT_EQ(erl[0], erl[1]);
for (size_t k = 1; k < erl.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 10.f : 1000.f, erl[k], 0.1);
}
EXPECT_EQ(erl[erl.size() - 2], erl[erl.size() - 1]);
// Verify that the ERLE is properly estimated
for (auto& E2_refined_ch : E2_refined) {
E2_refined_ch.fill(1.f * 10000.f * 10000.f);
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(10.f * E2_refined[0][0]);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
// Note that the render spectrum is built so it does not have energy in
// the odd bands but just in the even bands.
const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 2; k < kLowFrequencyLimit; k = k + 2) {
EXPECT_NEAR(4.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; k = k + 2) {
EXPECT_NEAR(1.5f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
for (auto& E2_refined_ch : E2_refined) {
E2_refined_ch.fill(1.f * 10000.f * 10000.f);
}
for (auto& Y2_ch : Y2) {
Y2_ch.fill(5.f * E2_refined[0][0]);
}
for (size_t k = 0; k < 1000; ++k) {
for (size_t ch = 0; ch < num_capture_channels; ++ch) {
subtractor_output[ch].ComputeMetrics(y[ch]);
}
state.Update(delay_estimate, converged_filter_frequency_response,
impulse_response, *render_delay_buffer->GetRenderBuffer(),
E2_refined, Y2, subtractor_output);
}
ASSERT_TRUE(state.UsableLinearEstimate());
{
const auto& erle = state.Erle(/*onset_compensated=*/true)[0];
EXPECT_EQ(erle[0], erle[1]);
constexpr size_t kLowFrequencyLimit = 32;
for (size_t k = 1; k < kLowFrequencyLimit; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 4.f : 1.f, erle[k], 0.1);
}
for (size_t k = kLowFrequencyLimit; k < erle.size() - 1; ++k) {
EXPECT_NEAR(k % 2 == 0 ? 1.5f : 1.f, erle[k], 0.1);
}
EXPECT_EQ(erle[erle.size() - 2], erle[erle.size() - 1]);
}
}
} // namespace
class AecStateMultiChannel
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<size_t, size_t>> {};
INSTANTIATE_TEST_SUITE_P(MultiChannel,
AecStateMultiChannel,
::testing::Combine(::testing::Values(1, 2, 8),
::testing::Values(1, 2, 8)));
// Verify the general functionality of AecState
TEST_P(AecStateMultiChannel, NormalUsage) {
const size_t num_render_channels = std::get<0>(GetParam());
const size_t num_capture_channels = std::get<1>(GetParam());
RunNormalUsageTest(num_render_channels, num_capture_channels);
}
// Verifies the delay for a converged filter is correctly identified.
TEST(AecState, ConvergedFilterDelay) {
constexpr int kFilterLengthBlocks = 10;
constexpr size_t kNumCaptureChannels = 1;
EchoCanceller3Config config;
AecState state(CreateEnvironment(), config, kNumCaptureChannels);
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, 48000, 1));
std::optional<DelayEstimate> delay_estimate;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2_refined(
kNumCaptureChannels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(kNumCaptureChannels);
std::array<float, kBlockSize> x;
EchoPathVariability echo_path_variability(
false, EchoPathVariability::DelayAdjustment::kNone, false);
std::vector<SubtractorOutput> subtractor_output(kNumCaptureChannels);
for (auto& output : subtractor_output) {
output.Reset();
output.s_refined.fill(100.f);
}
std::array<float, kBlockSize> y;
x.fill(0.f);
y.fill(0.f);
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
frequency_response(kNumCaptureChannels,
std::vector<std::array<float, kFftLengthBy2Plus1>>(
kFilterLengthBlocks));
for (auto& v_ch : frequency_response) {
for (auto& v : v_ch) {
v.fill(0.01f);
}
}
std::vector<std::vector<float>> impulse_response(
kNumCaptureChannels,
std::vector<float>(
GetTimeDomainLength(config.filter.refined.length_blocks), 0.f));
// Verify that the filter delay for a converged filter is properly
// identified.
for (int k = 0; k < kFilterLengthBlocks; ++k) {
for (auto& ir : impulse_response) {
std::fill(ir.begin(), ir.end(), 0.f);
ir[k * kBlockSize + 1] = 1.f;
}
state.HandleEchoPathChange(echo_path_variability);
subtractor_output[0].ComputeMetrics(y);
state.Update(delay_estimate, frequency_response, impulse_response,
*render_delay_buffer->GetRenderBuffer(), E2_refined, Y2,
subtractor_output);
}
}
} // namespace webrtc
|