1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/alignment_mixer.h"
#include <algorithm>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
AlignmentMixer::MixingVariant ChooseMixingVariant(bool downmix,
bool adaptive_selection,
int num_channels) {
RTC_DCHECK(!(adaptive_selection && downmix));
RTC_DCHECK_LT(0, num_channels);
if (num_channels == 1) {
return AlignmentMixer::MixingVariant::kFixed;
}
if (downmix) {
return AlignmentMixer::MixingVariant::kDownmix;
}
if (adaptive_selection) {
return AlignmentMixer::MixingVariant::kAdaptive;
}
return AlignmentMixer::MixingVariant::kFixed;
}
} // namespace
AlignmentMixer::AlignmentMixer(
size_t num_channels,
const EchoCanceller3Config::Delay::AlignmentMixing& config)
: AlignmentMixer(num_channels,
config.downmix,
config.adaptive_selection,
config.activity_power_threshold,
config.prefer_first_two_channels) {}
AlignmentMixer::AlignmentMixer(size_t num_channels,
bool downmix,
bool adaptive_selection,
float activity_power_threshold,
bool prefer_first_two_channels)
: num_channels_(num_channels),
one_by_num_channels_(1.f / num_channels_),
excitation_energy_threshold_(kBlockSize * activity_power_threshold),
prefer_first_two_channels_(prefer_first_two_channels),
selection_variant_(
ChooseMixingVariant(downmix, adaptive_selection, num_channels_)) {
if (selection_variant_ == MixingVariant::kAdaptive) {
std::fill(strong_block_counters_.begin(), strong_block_counters_.end(), 0);
cumulative_energies_.resize(num_channels_);
std::fill(cumulative_energies_.begin(), cumulative_energies_.end(), 0.f);
}
}
void AlignmentMixer::ProduceOutput(const Block& x,
ArrayView<float, kBlockSize> y) {
RTC_DCHECK_EQ(x.NumChannels(), num_channels_);
if (selection_variant_ == MixingVariant::kDownmix) {
Downmix(x, y);
return;
}
int ch = selection_variant_ == MixingVariant::kFixed ? 0 : SelectChannel(x);
RTC_DCHECK_GT(x.NumChannels(), ch);
std::copy(x.begin(/*band=*/0, ch), x.end(/*band=*/0, ch), y.begin());
}
void AlignmentMixer::Downmix(const Block& x,
ArrayView<float, kBlockSize> y) const {
RTC_DCHECK_EQ(x.NumChannels(), num_channels_);
RTC_DCHECK_GE(num_channels_, 2);
std::memcpy(&y[0], x.View(/*band=*/0, /*channel=*/0).data(),
kBlockSize * sizeof(y[0]));
for (size_t ch = 1; ch < num_channels_; ++ch) {
const auto x_ch = x.View(/*band=*/0, ch);
for (size_t i = 0; i < kBlockSize; ++i) {
y[i] += x_ch[i];
}
}
for (size_t i = 0; i < kBlockSize; ++i) {
y[i] *= one_by_num_channels_;
}
}
int AlignmentMixer::SelectChannel(const Block& x) {
RTC_DCHECK_EQ(x.NumChannels(), num_channels_);
RTC_DCHECK_GE(num_channels_, 2);
RTC_DCHECK_EQ(cumulative_energies_.size(), num_channels_);
constexpr size_t kBlocksToChooseLeftOrRight =
static_cast<size_t>(0.5f * kNumBlocksPerSecond);
const bool good_signal_in_left_or_right =
prefer_first_two_channels_ &&
(strong_block_counters_[0] > kBlocksToChooseLeftOrRight ||
strong_block_counters_[1] > kBlocksToChooseLeftOrRight);
const int num_ch_to_analyze =
good_signal_in_left_or_right ? 2 : num_channels_;
constexpr int kNumBlocksBeforeEnergySmoothing = 60 * kNumBlocksPerSecond;
++block_counter_;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
float x2_sum = 0.f;
ArrayView<const float, kBlockSize> x_ch = x.View(/*band=*/0, ch);
for (size_t i = 0; i < kBlockSize; ++i) {
x2_sum += x_ch[i] * x_ch[i];
}
if (ch < 2 && x2_sum > excitation_energy_threshold_) {
++strong_block_counters_[ch];
}
if (block_counter_ <= kNumBlocksBeforeEnergySmoothing) {
cumulative_energies_[ch] += x2_sum;
} else {
constexpr float kSmoothing = 1.f / (10 * kNumBlocksPerSecond);
cumulative_energies_[ch] +=
kSmoothing * (x2_sum - cumulative_energies_[ch]);
}
}
// Normalize the energies to allow the energy computations to from now be
// based on smoothing.
if (block_counter_ == kNumBlocksBeforeEnergySmoothing) {
constexpr float kOneByNumBlocksBeforeEnergySmoothing =
1.f / kNumBlocksBeforeEnergySmoothing;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
cumulative_energies_[ch] *= kOneByNumBlocksBeforeEnergySmoothing;
}
}
int strongest_ch = 0;
for (int ch = 0; ch < num_ch_to_analyze; ++ch) {
if (cumulative_energies_[ch] > cumulative_energies_[strongest_ch]) {
strongest_ch = ch;
}
}
if ((good_signal_in_left_or_right && selected_channel_ > 1) ||
cumulative_energies_[strongest_ch] >
2.f * cumulative_energies_[selected_channel_]) {
selected_channel_ = strongest_ch;
}
return selected_channel_;
}
} // namespace webrtc
|