1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/alignment_mixer.h"
#include <string>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/aec3_common.h"
#include "rtc_base/strings/string_builder.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::AllOf;
using ::testing::Each;
namespace webrtc {
namespace {
std::string ProduceDebugText(bool initial_silence,
bool huge_activity_threshold,
bool prefer_first_two_channels,
int num_channels,
int strongest_ch) {
StringBuilder ss;
ss << ", Initial silence: " << initial_silence;
ss << ", Huge activity threshold: " << huge_activity_threshold;
ss << ", Prefer first two channels: " << prefer_first_two_channels;
ss << ", Number of channels: " << num_channels;
ss << ", Strongest channel: " << strongest_ch;
return ss.Release();
}
} // namespace
TEST(AlignmentMixer, GeneralAdaptiveMode) {
constexpr int kChannelOffset = 100;
constexpr int kMaxChannelsToTest = 8;
constexpr float kStrongestSignalScaling =
kMaxChannelsToTest * kChannelOffset * 100;
for (bool initial_silence : {false, true}) {
for (bool huge_activity_threshold : {false, true}) {
for (bool prefer_first_two_channels : {false, true}) {
for (int num_channels = 2; num_channels < 8; ++num_channels) {
for (int strongest_ch = 0; strongest_ch < num_channels;
++strongest_ch) {
SCOPED_TRACE(ProduceDebugText(
initial_silence, huge_activity_threshold,
prefer_first_two_channels, num_channels, strongest_ch));
const float excitation_limit =
huge_activity_threshold ? 1000000000.f : 0.001f;
AlignmentMixer am(num_channels, /*downmix*/ false,
/*adaptive_selection*/ true, excitation_limit,
prefer_first_two_channels);
Block x(
/*num_bands=*/1, num_channels);
if (initial_silence) {
std::array<float, kBlockSize> y;
for (int frame = 0; frame < 10 * kNumBlocksPerSecond; ++frame) {
am.ProduceOutput(x, y);
}
}
for (int frame = 0; frame < 2 * kNumBlocksPerSecond; ++frame) {
const auto channel_value = [&](int frame_index,
int channel_index) {
return static_cast<float>(frame_index +
channel_index * kChannelOffset);
};
for (int ch = 0; ch < num_channels; ++ch) {
float scaling =
ch == strongest_ch ? kStrongestSignalScaling : 1.f;
auto x_ch = x.View(/*band=*/0, ch);
std::fill(x_ch.begin(), x_ch.end(),
channel_value(frame, ch) * scaling);
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
if (frame > 1 * kNumBlocksPerSecond) {
if (!prefer_first_two_channels || huge_activity_threshold) {
EXPECT_THAT(y,
AllOf(Each(x.View(/*band=*/0, strongest_ch)[0])));
} else {
bool left_or_right_chosen;
for (int ch = 0; ch < 2; ++ch) {
left_or_right_chosen = true;
const auto x_ch = x.View(/*band=*/0, ch);
for (size_t k = 0; k < kBlockSize; ++k) {
if (y[k] != x_ch[k]) {
left_or_right_chosen = false;
break;
}
}
if (left_or_right_chosen) {
break;
}
}
EXPECT_TRUE(left_or_right_chosen);
}
}
}
}
}
}
}
}
}
TEST(AlignmentMixer, DownmixMode) {
for (int num_channels = 1; num_channels < 8; ++num_channels) {
AlignmentMixer am(num_channels, /*downmix*/ true,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
Block x(/*num_bands=*/1, num_channels);
const auto channel_value = [](int frame_index, int channel_index) {
return static_cast<float>(frame_index + channel_index);
};
for (int frame = 0; frame < 10; ++frame) {
for (int ch = 0; ch < num_channels; ++ch) {
auto x_ch = x.View(/*band=*/0, ch);
std::fill(x_ch.begin(), x_ch.end(), channel_value(frame, ch));
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
float expected_mixed_value = 0.f;
for (int ch = 0; ch < num_channels; ++ch) {
expected_mixed_value += channel_value(frame, ch);
}
expected_mixed_value *= 1.f / num_channels;
EXPECT_THAT(y, AllOf(Each(expected_mixed_value)));
}
}
}
TEST(AlignmentMixer, FixedMode) {
for (int num_channels = 1; num_channels < 8; ++num_channels) {
AlignmentMixer am(num_channels, /*downmix*/ false,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
Block x(/*num_band=*/1, num_channels);
const auto channel_value = [](int frame_index, int channel_index) {
return static_cast<float>(frame_index + channel_index);
};
for (int frame = 0; frame < 10; ++frame) {
for (int ch = 0; ch < num_channels; ++ch) {
auto x_ch = x.View(/*band=*/0, ch);
std::fill(x_ch.begin(), x_ch.end(), channel_value(frame, ch));
}
std::array<float, kBlockSize> y;
y.fill(-1.f);
am.ProduceOutput(x, y);
EXPECT_THAT(y, AllOf(Each(x.View(/*band=*/0, /*channel=*/0)[0])));
}
}
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
TEST(AlignmentMixerDeathTest, ZeroNumChannels) {
EXPECT_DEATH(
AlignmentMixer(/*num_channels*/ 0, /*downmix*/ false,
/*adaptive_selection*/ false, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
, "");
}
TEST(AlignmentMixerDeathTest, IncorrectVariant) {
EXPECT_DEATH(
AlignmentMixer(/*num_channels*/ 1, /*downmix*/ true,
/*adaptive_selection*/ true, /*excitation_limit*/ 1.f,
/*prefer_first_two_channels*/ false);
, "");
}
#endif
} // namespace webrtc
|