1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/fft_data.h"
#include "rtc_base/system/arch.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
namespace webrtc {
#if defined(WEBRTC_ARCH_X86_FAMILY)
// Verifies that the optimized methods are bitexact to their reference
// counterparts.
TEST(FftData, TestSse2Optimizations) {
if (GetCPUInfo(kSSE2) != 0) {
FftData x;
for (size_t k = 0; k < x.re.size(); ++k) {
x.re[k] = k + 1;
}
x.im[0] = x.im[x.im.size() - 1] = 0.f;
for (size_t k = 1; k < x.im.size() - 1; ++k) {
x.im[k] = 2.f * (k + 1);
}
std::array<float, kFftLengthBy2Plus1> spectrum;
std::array<float, kFftLengthBy2Plus1> spectrum_sse2;
x.Spectrum(Aec3Optimization::kNone, spectrum);
x.Spectrum(Aec3Optimization::kSse2, spectrum_sse2);
EXPECT_EQ(spectrum, spectrum_sse2);
}
}
// Verifies that the optimized methods are bitexact to their reference
// counterparts.
TEST(FftData, TestAvx2Optimizations) {
if (GetCPUInfo(kAVX2) != 0) {
FftData x;
for (size_t k = 0; k < x.re.size(); ++k) {
x.re[k] = k + 1;
}
x.im[0] = x.im[x.im.size() - 1] = 0.f;
for (size_t k = 1; k < x.im.size() - 1; ++k) {
x.im[k] = 2.f * (k + 1);
}
std::array<float, kFftLengthBy2Plus1> spectrum;
std::array<float, kFftLengthBy2Plus1> spectrum_avx2;
x.Spectrum(Aec3Optimization::kNone, spectrum);
x.Spectrum(Aec3Optimization::kAvx2, spectrum_avx2);
EXPECT_EQ(spectrum, spectrum_avx2);
}
}
#endif
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
// Verifies the check for null output in CopyToPackedArray.
TEST(FftDataDeathTest, NonNullCopyToPackedArrayOutput) {
EXPECT_DEATH(FftData().CopyToPackedArray(nullptr), "");
}
// Verifies the check for null output in Spectrum.
TEST(FftDataDeathTest, NonNullSpectrumOutput) {
EXPECT_DEATH(FftData().Spectrum(Aec3Optimization::kNone, nullptr), "");
}
#endif
// Verifies that the Assign method properly copies the data from the source and
// ensures that the imaginary components for the DC and Nyquist bins are 0.
TEST(FftData, Assign) {
FftData x;
FftData y;
x.re.fill(1.f);
x.im.fill(2.f);
y.Assign(x);
EXPECT_EQ(x.re, y.re);
EXPECT_EQ(0.f, y.im[0]);
EXPECT_EQ(0.f, y.im[x.im.size() - 1]);
for (size_t k = 1; k < x.im.size() - 1; ++k) {
EXPECT_EQ(x.im[k], y.im[k]);
}
}
// Verifies that the Clear method properly clears all the data.
TEST(FftData, Clear) {
FftData x_ref;
FftData x;
x_ref.re.fill(0.f);
x_ref.im.fill(0.f);
x.re.fill(1.f);
x.im.fill(2.f);
x.Clear();
EXPECT_EQ(x_ref.re, x.re);
EXPECT_EQ(x_ref.im, x.im);
}
// Verifies that the spectrum is correctly computed.
TEST(FftData, Spectrum) {
FftData x;
for (size_t k = 0; k < x.re.size(); ++k) {
x.re[k] = k + 1;
}
x.im[0] = x.im[x.im.size() - 1] = 0.f;
for (size_t k = 1; k < x.im.size() - 1; ++k) {
x.im[k] = 2.f * (k + 1);
}
std::array<float, kFftLengthBy2Plus1> spectrum;
x.Spectrum(Aec3Optimization::kNone, spectrum);
EXPECT_EQ(x.re[0] * x.re[0], spectrum[0]);
EXPECT_EQ(x.re[spectrum.size() - 1] * x.re[spectrum.size() - 1],
spectrum[spectrum.size() - 1]);
for (size_t k = 1; k < spectrum.size() - 1; ++k) {
EXPECT_EQ(x.re[k] * x.re[k] + x.im[k] * x.im[k], spectrum[k]);
}
}
// Verifies that the functionality in CopyToPackedArray works as intended.
TEST(FftData, CopyToPackedArray) {
FftData x;
std::array<float, kFftLength> x_packed;
for (size_t k = 0; k < x.re.size(); ++k) {
x.re[k] = k + 1;
}
x.im[0] = x.im[x.im.size() - 1] = 0.f;
for (size_t k = 1; k < x.im.size() - 1; ++k) {
x.im[k] = 2.f * (k + 1);
}
x.CopyToPackedArray(&x_packed);
EXPECT_EQ(x.re[0], x_packed[0]);
EXPECT_EQ(x.re[x.re.size() - 1], x_packed[1]);
for (size_t k = 1; k < x_packed.size() / 2; ++k) {
EXPECT_EQ(x.re[k], x_packed[2 * k]);
EXPECT_EQ(x.im[k], x_packed[2 * k + 1]);
}
}
// Verifies that the functionality in CopyFromPackedArray works as intended
// (relies on that the functionality in CopyToPackedArray has been verified in
// the test above).
TEST(FftData, CopyFromPackedArray) {
FftData x_ref;
FftData x;
std::array<float, kFftLength> x_packed;
for (size_t k = 0; k < x_ref.re.size(); ++k) {
x_ref.re[k] = k + 1;
}
x_ref.im[0] = x_ref.im[x_ref.im.size() - 1] = 0.f;
for (size_t k = 1; k < x_ref.im.size() - 1; ++k) {
x_ref.im[k] = 2.f * (k + 1);
}
x_ref.CopyToPackedArray(&x_packed);
x.CopyFromPackedArray(x_packed);
EXPECT_EQ(x_ref.re, x.re);
EXPECT_EQ(x_ref.im, x.im);
}
} // namespace webrtc
|